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Abstract

We propose a systematic study of the so-called flattening operator in team semantics. This operator was first introduced by
Hodges in 1997, and has not been studied in more detail since. We begin a systematic study of the expressive power this
operator adds to the most well-known team-based logics, such as dependence logic, anonymity logic, inclusion logic and
exclusion logic.

1 Introduction

Team semantics is a mathematical framework for studying concepts and phenomena that arise in the
presence of plurality of data. Examples of such concepts are, for example, functional dependence
in database theory and conditional independence of random variables in statistics. The beginning of
the area can be traced back to the introduction of dependence logic in [31]. In dependence logic,
formulas are interpreted by sets of assignments (called feams) and it extends the syntax of first-
order logic by dependence atoms =(x,y) expressing that the values of the variables x functionally
determine the values of y in a team.

Since the introduction of dependence logic, the expressivity and complexity aspects of logics in
team semantics have been extensively studied (see e.g. [10]) and interesting connections have been
found to areas such as database theory [19, 23], Bayesian networks [6], quantum foundations [1]
and inquisitive and separation logic [5, 18]. These works have focused on logics in the first-order,
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2 The flattening operator in team-based logics

propositional and modal team semantics, and more recently also in the multi-set and probabilistic
settings [1, 7, 8].

A defining feature of team semantics is that satisfaction of a formula is defined with reference
to a set of assignments, not just a single assignment, as is the case in classical first-order logic. In
this respect, logics with team semantics resemble modal logic, where a Kripke structure offers a
spectrum of possible assignments. In a Kripke structure, there is the so-called accessibility relation,
which brings in the aspect that assignments, for example, develop in time. This makes it possible to
talk in modal logic about necessity and possibility. Team semantics is more rigid. There is just the
set (called team) of assignments without any built-in relations between its elements. However, this
makes it possible to express interesting and highly non-trivial ‘combinatorial” properties of variables,
such as the aforementioned functional dependence but also inclusion and exclusion atoms [13] and
independence atoms [16].

We can think of the sub-team relation as an accessibility relation, and then ‘necessity’ and
‘possibility” make perfect sense. Then ‘necessarily ¢’ means ‘¢ is true in every sub-team’, and
‘possibly ¢’ means ‘¢ is true in some non-empty sub-team’.

Some formulas do not seem to take advantage of the existence of a team around an assignment.
One way to make this phenomenon exact is the following: a formula ¢ is called flat, or is said to
satisfy the flatness criterion, if for all model 9t and for all team X the following holds

MEy ¢ & VseX: ME ¢. (1.1

This criterion holds for first-order formulas (that do not contain new non-classical atoms) ¢, i.e. all
first-order formulas are flat. This offers a method to show that some given formula is not logically
equivalent to a first-order formula. One just shows that the formula is not flat. To take two simple
examples, =(x, y) is not flat, hence it cannot be logically equivalent to a first-order formula, which
is intuitively obvious but still needs an argument. Flatness provides such an argument. In general,
the problem of deciding whether a given dependence logic formula is equivalent to a first-order
formula is highly undecidable. Therefore, the question of first-order expressibility is non-trivial and
any method, even a partial one, is useful.

One can say that flat formulas are, in a sense, ‘local’, in that their truth is determined by what holds
for single assignments. Still, non-trivial properties of teams can be expressed. For example, x = y is
flat and it says that the variables x and y have the same value in the team. It is a trivial property of a
team but still such teams are clearly distinguished from totally arbitrary teams. Flatness just means
that the distinguishing property is ‘flatly spread out’ in the team.

One might think that flatness of a formula is reflected in the formula being built from flat
elements. But all sentences are flat because their truth in any non-empty team is determined by their
truth in {@}, i.e. the team containing only the empty assignment. A sentence expresses something
about the model that the team is based on. A sentence says nothing about any team. The flatness of
sentences is, therefore, like an anomaly. But it follows that being flat is not equivalent to being, up
to logical equivalence, first-order. A flat formula may very well have non-flat sub-formulas.

EXAMPLE.
We consider a signature with a 2-ary relation R(:, -). Consider the following formula ¢ (x)

Ju(R(Cx,u) AVV(R(x,v) = IR0, w) A =(w,v) AW # u))).

This is satisfied by a team X if for every assignment of the variable x in the team X, the set R(x, -) is
infinite. It is a flat formula, but its sub-formula =(w, v) is not flat. Thus, condition (1.1) only says
that ¢ itself behaves in a first order way by being flat, but its sub-formulas need not do so.
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The flattening operator in team-based logics 3

The class of teams satisfying a flat formula is closed downwards and closed under unions and
intersections. There is a maximal team, and the class of teams satisfying a flat formula is precisely
the power-set of that team. The maximal team of a flat formula ¢ is given by

{s | MEy ¢}

Thus the dimension (in the sense of [20]) of a flat formula is always 1.
We can make an arbitrary formula flat by using the following new logical operator, first introduced
by Hodges in 1997 [21], called the flattening operator and denoted here by F:

MEy Fp < Vs X: ME, 6. (1.2)

Thus, F¢ is always flat, and for a flat formula ¢, we have ¢ = F¢. The flattening operator is
somewhat similar to the necessity operator [J¢ and the possibility operator (¢ from Modal Logic.
The ‘mode’ of ¢ that F¢ brings about is not that ¢ is ‘necessary’ or ‘possible’, but that on the
question whether the entire team satisfies ¢ or not, at least we know that ¢ is true in singleton sub-
teams. We can perhaps anticipate that F¢ is computationally much simpler to check for satisfaction
than ¢ itself, since we have to check only single assignments. However, if ¢ is a sentence, then
F¢ = ¢. So F¢ may be computationally as complicated as ¢ itself.

The flattening operator F makes an arbitrary formula flat. This happens with no regard to what the
formula looks like inside. There is another way to make a formula flat. This is based on changing the
formula inside as follows: the flattening ¢ of a formula ¢ is obtained inductively by replacing non-
first-order atomic formulas by something that is flat. If there are non-first-order logical operations,
then they are similarly replaced by something flat. We can impose axioms for the flattening, because
it is a priori not clear what it is. There may be different ways to flatten a formula, but we expect
them all to satisfy some basic axioms. This will be discussed in Section 3.

Although F¢ is always flat, it is not always equivalent to ¢%. We can use the flattening of a formula
to define a kind of negation of a formula: we take the flattening ¢', which is first-order, and then
apply negation to the flattening.

A weaker version of flatness is the following: a formula is downwards flat if

MExy ¢ = VseX: Mk ¢. (1.3)

Thus, the truth of ¢ in a team is inherited by the singleton sub-teams. Of course, downwards closed
formulas are downwards flat, but not necessarily flat. An example is =(x, y). Every singleton team
satisfies =(x, y) but not every team satisfies =(x, y).

A similar weaker version of flatness is the following: a formula is upwards flat if

(Vs e X: MEy ¢) = MEy ¢. (1.4)

So for the truth of ¢ in a team, it is enough that ¢ ‘gathers’ truth from little singleton pieces inside
the team.
Still another variation of flatness is n-coherence (introduced in [22], see also [27] and [4]):

MEy ¢ <= (VY C X such that |Y| = n, M Ey ¢). (1.5)

Usually, flatness corresponds in this terminology to 1-coherence. For example, dependence atoms
are not flat but they are 2-coherent. In [22], it is shown that n-coherence is preserved by conjunction
but not by disjunction, except if one of the disjuncts is 1-coherent. The disjunction of two dependence
atoms need not be n-coherent for any n. The model-checking problem for n-coherent formulas is in
LOGSPACE. Model-checking of the disjunction of two 2-coherent formulas is in NLOGSPACE.
In [22], it is asked whether there is a dependence logic formula that is not k-coherent for any & but
which is ‘y/n-coherent’?
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4  The flattening operator in team-based logics

Coherence, just like flatness, can be approached from the point of view of an operator as well. The
n-coherence operator applied to a formula says of a team that every sub-team of size n satisfies the
formula. The co-n-coherence operator applied to a formula says of a team of size m that every sub-
team of size m — n satisfies the formula. The co-n-coherence operator is a way to say that a formula is
approximately satisfied by the team. In [32] the approximation is more generous (proportional). We
can even let an operator say that the team satisfies the formula even if any n assignments satisfying
a given fixed first order formula are added to the team or faken away from the team. So, the team
satisfies the formula even if it is made a little smaller or a little bigger. It is a kind of ‘give or take at
most n” operator. Dependence logic is closed under all these operators. We will not pursue this line
of argument further in this paper.

Our contributions We study the effects of extending several team-based logics by the flattening
operator of Hodges. We also take a new look at the concept of a flattening of a formula that
has been utilized in several works in the area. In Section 2 we recall the basic concepts and
definitions relevant for this work. In Section 3 we show that the flattening of a formula can be
characterized axiomatically but also give explicit inductive definitions of it for the most prominent
team-based logics. In Section 4 we introduce the flattening operator and study its interactions with
the aforementioned logics. In Section 5 we show that the flattening operator increases the expressive
power of the unary fragments of inclusion and anonymity logics. These results show that the two
different ways of defining a flattening of a formula are not in general equivalent.

2 Preliminaries

In this section, we will briefly recall the notation used in this work, the definition of team semantics,
and some basic results that will be used in the rest of this work. Through all of this work, we assume
that we have countable sets of individual variable symbols x;, y;, z;, etc. for i € N, and of relation
variable symbols JXj, Y, Z;, etc. for i € N of all arities. We will use Fraktur font to represent models,
such as 2, B, I, etc. and use Roman font to represent their corresponding domain A4, B, M, etc.
We assume throughout that the domains of models have at least two elements. This assumption is
made to avoid some trivialities arising with models whose domain is a singleton. We will write x, y,
z and so on to describe tuples of variable symbols; and likewise, we will write @, b, m and so forth
to describe tuples of elements of a model. Given any set 4, we will furthermore write P(4) for the
powerset {B | B € A} of 4, and P*(4) for P(4) \ {@}.

2.1 Team semantics

If s is an assignment, we write s [m/v] for the assignment in which we substituted the variable v by
the value m. We recall from [31] the following concepts: a feam X is any set of assignments for a
fixed set of variables, denoted dom(X). Suppose now X is a team. It is sometimes useful to think of
X as a relation in the following sense: suppose xi,...,x, € dom(X). We obtain from X the n-ary
relation X (x1,...,x,) = {{s(x1),...,s(xs)) | s € X}. If m is an element of the domain M of our
model 9, then X[m/v] is the team consisting of all s[m/v], where s € X. We use X[M/v], called
the duplication of X at v, to denote the set of all s[m/v], where m € M and s € X. Finally, if
H: X — P*(M), then X[H /v], called the supplementation of X at v by H, is the team consisting of
all s[m/v], where s € X and m € H(s).

For our purposes, it will be useful to first present team semantics for first-order logic proper, and
then progressively add new atoms (dependency, non-dependency, inclusion, exclusion, etc.).
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The flattening operator in team-based logics 5

We recall the usual definition of team semantics (in its lax formulation). For the sake of simplicity,
it is assumed that all expressions are in negation normal form, meaning that negations — only appear
in front of first-order literals.

DEFINITION 2.1 (Team semantics for first-order logic).
Let o be a first-order signature. Let 97 be a first-order o-model, let ¢ be a first-order o-formula,
and let X be a team over 91 such that dom (X) 2 FV (p). Then we define the relation 9t Fy ¢ by
induction over the structure of the formula ¢ as follows:

TS-lit: If ¢ = o where « is a first-order o-literal, then 9t Fy ¢ if and only if for all assignments
s € X it holds that 9 g « (here according to Tarskian semantics).

TS-v: If ¢ = ¥ Vv ¥ where ¥| and v, are first-order o -formulas, then 9t Fy ¢ if and only if
there exist some teams Y and Z (not necessarily disjoint) such that X = Y U Z, M Fy i
and M Fz ;.

TS-A: If ¢ = ¥ A Y where ¥ and ¥, are first-order o -formulas, then 90t Fy ¢ if and only if
M Ex Y1 and M Ex .

TS-3: If ¢ = Ivyy where v is a variable symbol and v is a first-order o-formula, then 91 Fy ¢ if
and only if there exists some H: X — P* (M) such that 9 X[H/M V-

TS-3: If ¢ = Vv where v is a variable symbol and 1 is a first-order o -formula, then 91 Fy ¢ if
and only if 0 Exay ¥

If it is the case that 9T Fx ¢, then we say that the model 991 together with the team X satisfy ¢, and
if it is not the case, then we say that the model 907 together with the team X do not satisfy ¢ and we
write it M Ex ¢. If ¢ is a sentence (i.e. has no free-variables), we say that ¢ is true in 9t according
to team semantics, and we write it M F ¢, if MM F(z} ¢ where {T} is the team containing only the
empty assignment. Otherwise, we say that ¢ is false in 91 according to team semantics, and we write
it M E .

We recall the most well-known team-based logics. We first give definitions for dependence atoms,
introduced in [31]. Let k € N. If 7, is a k-tuple of o-terms and #, is a o -term, then =(71, 1) is called
a k-ary dependence atom. For 0-ary atoms, called constancy atoms, we may simply write =(t2). We
define FV(=(#1, 1)) = Vr(#1) U Vi(#2). The set of formulas of dependence logic over a signature o,
denoted by FO(=(:,-)) [o'] or even more simply DEP [¢], is defined by adding dependence atoms
of all arities to the definition of the set of formulas of FO [o]. By allowing only at most k-ary
dependence atoms in the condition above, we obtain the fragment FO(=g(-,-)) [o] or even more
simply DEPy, [o] called k-ary dependence logic. If 9t is a model and X is a team over 91 such that
dom(X) D Vr(71t2), then we define the truth of =(7,, ;) in the model 9 and the team X:

MEy =@1,0) iff foralls,s’ € X, if s(f)) = s'(#1), then s(r) = 5'(12).

Next, we present so-called anonymity atoms also called non-dependency atoms [13], or afunc-
tional dependence atoms [28]. They have been studied, e.g. in [29, 30]. Let k € N. If 7; is a k-tuple
of o-terms and 1, is a o-term, then 71 Y t, is called a k-ary anonymity atom. The O-ary anonymity
atom, also called non-constancy atom, we simply write Y¢. We define FV({ Y1) = Vi(h) UVr(t).
The set of formulas of anonymity logic over a signature o, denoted by FO(Y) [o] or even more
simply ANON [o], is defined by adding anonymity atoms of all arities to the definition of the set
of formulas of FO [o]. By allowing only at most k-ary anonymity atoms in the condition above, we
obtain the fragment FO(Y%) [0] or even more simply ANONy, [o] called k-ary anonymity logic. If
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6 The flattening operator in team-based logics

9 is a model and X is a team over M such that dom(X) 2 Vr(7i52), then we define the truth of
71 Y 1, in the model 90 and the team X:

MEyf Y1, iff foreverys € X, thereiss’ € X such that s(7;) = s'(f1) but s(t2) # 5'(12).

Next, we turn to inclusion atoms. Let k € N. If ?1,?2 are k-tuples of o-terms, then HWChisa
k-ary inclusion atom. We define FV(# C 1) = Vi(f1) U V(). The set of formulas of inclusion
logic over a signature o, denoted by FO(C) [o'] or even more simply INC [¢], is defined by adding
inclusion atoms of all arities to the definition of the set of formulas of FO [o']. By allowing only at
most k-ary inclusion atoms in the condition above, we obtain the fragment FO(ZC) [o] or even more
simply INCy [o] called k-ary inclusion logic. If 9 is a model and X is a team over 90t such that
dom(X) O Vr(?l?z), then we define the truth of 7; € 7, in the model 2% and the team X:

MEy i) Ci iff foralls € X, there exists s’ € X such that s(7) = s'(&2).

Let us now recall (conditional) independence atoms. Let ki, ky, k3 € N. If 7 is ak -tuple, b
a ky-tuple of o-terms and 7 a ks-tuple of o-terms, then b J_;l ?3 is a (ky,k2, kz)-ary (conditional)
independence atom. We define FV(, 13 73) = Vr(i)) U Vr(f2) U V(). The set of formulas of
(conditional) independence logic over a signature o, denoted by FO(L) [o] or even more simply
IND [o] is defined by adding independence atoms of all arities to the definition of the set of formulas
of FO [o]. By allowing only at most (k1,k», k3)-ary independence atoms in the condition above,
we obtain the fragment FO (L, 4, 4;) [0] or even more simply INDy, 4, i, [0] called (k1, k2, k3)-ary
(conditional) independence logic. If 91 is a model and X is a team over 91 such that dom(X) 2
Vr(711213), then we define the truth of 7, 13 73 in the model 9t and the team X

M Ex b 13, 73 iff foralls,s’ € X, ifs(f1) = s'(71), then there exists s” € X
such that s (?1?2) = S(?l;z) and s” (?1?3) = (?1?3)

Finally, we present the syntax and the semantics for exclusion logic. Let k € N. If 1,7, are k-
tuples of o -terms, then ?1 | 7 isa k-ary exclusion atom. We define FV( | 72) = Vr(?l) U Vr(?z).
The set of formulas of exclusion logic over a signature o, denoted by FO(|) [o] or even more simply
EXC[o], is defined by adding exclusion atoms of all arities to the definition of the set of formulas
of FO [o]. By allowing only at most k-ary exclusion atoms in the condition above, we obtain the
fragment FO(|;) [0] or even more simply EXCy [o] called k-ary exclusion logic. If 9 is a model
and X is a team over 91 such that dom(X) 2 Vr(?l?z). We define the truth of ?1 | 72 in the model 901
and the team X:

MEy 7 |7 iff foralls,s’ € X, it holds that s(7;) # s' (7).

More generally, we will speak of feam-based logic to speak of one of these logics based on team
semantics (i.e. independence logic, anonymity logic, inclusion logic, exclusion logic or independence
logic) and of team-based formula to speak of a formula from one of these logics (i.e. a formula
that uses dependency atoms, anonymity atoms, inclusion atoms, exclusion atoms or independence
atoms).

2.2 Closure properties

The logics that we have presented so far can be differentiated on the basis of their distinct closure
properties. Let us start by defining the closure properties.
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The flattening operator in team-based logics 7

DEFINITION 2.2.
Let o be a signature. A team-based o-formula ¢:

o is said to have the empty team property if for any o-model 901, it holds that 9t F ¢ (according
to team semantics).
o is said to be downwards closed if for all o-models 2t and teams X over N, it holds that

MEx ¢ — VY CX,MFy ¢.

e is said to be union closed if for all o-models 9T and collections {X, | iel } of teams X; over
1, it holds that

MEy, forallie ] = MEyx, ¢

e is said to be flat if for all o-models 21 and teams X over 9N, it holds that

MEy ¢ < ME g foralls € X.

One can remark that the flatness property is equivalent to the combination of the downwards
closure and the union closure properties.

Each of these properties is extended to team-based logics: a given logic (e.g. DEP, ANON, INC,
EXC, ...) has some of these properties if all formulas of the logic have those properties. We can
then split some of the well-known team-based logics between the ones that are downwards closed
and the ones that are union closed.

3 Flattening of a formula

We will now introduce the flattening of a formula ¢, denoted by ¢f, where ¢ belongs to some team-
based logic. The notion of ‘flattened formulas’ was first defined in [31] and then used e.g. in [33].

The idea of flattening is that it reveals ‘superficial’ information about the formula i.e. information
that has apparently nothing to do with the team semantical atoms. For example, the formula Vx3y(x L
y A Xx # x) cannot be satisfied, but this has nothing to do with the team semantics of x L y. One need
not understand anything about x L y to conclude that the formula is unsatisfiable.

The definition of flattening that was given in [31] was inductive and for dependence logic only.
We present here an axiomatic definition that is appropriate in a wider context. We show that in most
cases these axioms determine a unique inductive definition of a flattening of a formula.

1. (flatness axiom) ¢ is a flat formula.
2. (entailment axiom) for all models 9t and all teams X over 97 such that dom(X) 2 FV(¢), the
following must hold

MEy ¢ = MEY ¢

3. (distributivity axiom) The following holds: (x(¢1,...,@:))" = *(¢f,...,¢}) for any logical
operator  of arity 7, and (Qx¢)" = Ox¢ for any quantifier Q.

The motivation for these axioms is as follows: the flatness axiom is obviously necessary. The
entailment axiom expresses the following idea: we do not want that the flattening of ¢ says exactly
the same as @. But we want to know that the flattening of ¢ is true at least if ¢ is so. So the flattening
is a weaker form of truth, which still reveals something (perhaps) relevant about the formula. Finally,
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8 The flattening operator in team-based logics

the distributivity axiom reflects the idea that we think of flattening as a syntactic operation. This
axiom says that applying distributivity yields a formula that satisfies the other axioms.

Note that the received inductive definition of flattening for dependence logic, as in [31], satisfies
the above axioms.

Now, what we would like to obtain is an explicit inductive definition of the flattening of a given
formula. From these requirements, we can infer the flattening of the most well-known team-based
atoms. It is easy to see that taking T for the flattening of any non first-order atom is sufficient to
satisfy all these requirements. But the interesting question is: is it necessary? The goal of this section
is to answer this question.

We get the following flattening for the most well-known team-based atoms

PROPOSITION 3.1.

The following equivalences are implied by the above axioms:
(i) for dependency atoms: (=(%,))f = T,
(ii) for anonymity atoms: 3 Y y)f = T,

(iii) for inclusion atoms: (x € y)f = T,

(iv) for independence atoms: (x L 3)f = T.

PROOF. The proof of each claim is straightforward.

(i) Suppose (=(%,1)f # T. Then M Ky (=@, »))f for some model M and team X. But
by the flatness axiom, (=(X, y))f is flat, and so it means that there is 59 € X such that
M Ky (=G, y))f. On the other hand, as a singleton team satisfies any dependence atom,
then in particular 9 Fy; =(*,»), and so by the entailment axiom, M F, (=(, y))f.
Contradiction.

(ii) Suppose that x T y)f # T.Then M Ex XY y)f for some model 9 and team X. But by the
flatness axiom, (x Y y)f is flat, and so it means that there is so € X such that 0t ¥, xY y)f.
On the other hand, we construct from scratch a new team Y as follows. We write a = so(¥) and
b =so(y). Let b’ € M\ {b} (non-empty by assumption in this article). Let s;, be the assignment
{)_é — a,y > b’}. Then consider the team ¥ = {SO;SE)}, i.e. Y is the following team

Xy
so: al| b
S/. ZZ b/
0

By construction, 90t Ey ¥ Y y, so by the entailment axiom, we get M £y (& Y )" Now by the
flatness axiom, (x Y y)‘c is flat, and so for all s € ¥ we get M F(yy &Y y)f, in particular for
so € Yweget Mg, &Y »f. Contradiction.

(iii) Suppose (X< 7)f % T. Then M ¥y < y)f for some model 9 and team X . But by the flatness
axiom, (¥ C ) is flat, and so it means that there is so € X such that M ¥, & < ). On
the other hand, we construct from scratch a new team Y as follows. We write a = so(¥) and
b = s0(¥). Let s{, be the assignment {X > 4,y > a}. Then consider the team ¥ = {so,s;,}, i.e.
Y is the following team

NI

QL QL =L
QL Sl
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The flattening operator in team-based logics 9

By construction, 901 £y X C 7, so by the entailment axiom, we get M Fy (¥ € 7). Now by the
flatness axiom, (¥ C )" is flat, and so for all s € ¥ we get M Fy (X € ), in particular for
so € Y we get M 5y (X< »f. Contradiction.

(iv) Suppose (¥ L »f # T. Then M #yx & L ¥ for some model M and team X. But by the
flatness axiom, (¥ L 3)" is flat, and so it means that there is 5o € X such that 90t ;) (& L ).
On the other hand, as a singleton team satisfy any pure independence atom, then in particular
9N Fi5) X Ly, and so by the entailment axiom, M ) (¢ L »f. Contradiction. 0

REMARK 3.2
Curiously, we do not obtain a unique solution in the case of the exclusion atom. Indeed, for the
exclusion atom (X | })f, there are (at least) two choices satisfying the flattening axioms: we can let
& | »fbe T, or can let (¥ | »)f be X # 3. Both choices satisfy the flattening axioms.

In order to remain as symmetrical as possible, we make the choice in this article to take T as the
flattening of the exclusion atom.

Note that in this Proposition 3.1, we found the flattening only for atoms built of variables, not
terms. In fact, this is not an issue as we can eliminate composite terms inside team-based atoms by
existentially quantifying over new variables. Hence, we now have an explicit expression for all team-
based atoms built of terms. Also, it is immediate to infer that the flattening of a first-order literal in
actually itself. One can then infer the flattening of any team-based formula using the distributivity
axiom: substitute all team-based atoms by T, and keep all other (first-order) literals as they are.

4 Flattening operator

We move now to investigating the flattening operator, which just boldly asserts that the formula
following the operator has to be treated in a flat way, whether the formula looks flat or not. This
operator was first introduced in [21] and was at that time denoted by | ’. In this article, we will
denote it by ‘F’.

4.1 Definition

First we give the syntax and the semantics of the flattening operator F.

DEFINITION 4.1 (Syntax of the flattening operator).
Let ¢ be a team-based o-formula, then Fg is a team-based o -formula. The flattening operator does
not bind variables, thus FV(Fp) = FV(g).

It should be noted that the flattening operator F may be applied to any kind of team-based
formula. Let D = {d|,...,d,} be a set of team-based constructors (e.g. dependency, anonymity,
independency, inclusion, exclusion, etc.). We will refer to the extension of FO(D) by the flattening
operator F by FO(D, F).

DEFINITION 4.2 (Semantics of the flattening operator).
Let ¢ be a team-based o-formula, 9t a o0-model and X a team over 9t such that dom(X) D FV(¢).
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We define the truth of the formula F¢ in the model 9t and the team X as:
M Ex F§0 < Vs GX,QZR':{S} 1)

Therefore, one can rewrite the flatness definition as follows: let ¢ be a team-based formula, 9t a
model and X a team over 91 such that dom (X) 2 FV (¢) (also equal to FV (Fg)), then g is flat if
and only if it holds that

MExy ¢ < MNMEy Fo.

It is precisely because of this characterization of flattenness that the flattening operator was
introduced, and that it bears the name that it does. One can easily show the following immediate
properties about the flattening operator.

PROPERTY 4.3.
Let ¢ be any team-based formula. Then the following properties hold:

(i) the formula F¢ is always flat.
(ii) ¢ is flatif and only if Fp = ¢.
(iii) the operator F is idempotent, that is, FFp = Fe.

PROOF.

(1) Let 21 be a model, and let X be a team over 91 such that dom (X) 2 FV (Fgo). According to
Definition 4.1, we get that FV (F(p) = FV (). Then

MEx Fo
S Vse X, ME @ (semantics of F)
= VseX, (Vs € (s}, MEy @)
= Vs e X, ME Fo

(i) Let 9t be a model, and let X be a team over 91 such that dom (X) 2 FV (¢). Suppose that ¢ is
flat, then 9 Ex Fo iff for all s € X, M Fyy ¢ iff M Ex ¢. Conversely, suppose that Fp = ¢,
then M Fx ¢ iff M Ex Fo iff foralls € X, M Figy .

(iii) This is a direct consequence of the two previous items. =

PROPERTY 4.4.
Let ¢ be a team-based formula, 9t a model and X a team over 9 such that dom (X) 2 FV (¢). If ¢
is a flat formula, then

MEy Fp = MEy ¢

PROOF. Suppose that ¢ is flat, then 9t Fx Fp implies by property (ii) that 9t Fy ¢, which implies

by the entailment axiom that 90t Ey ¢F. O
REMARK 4.5.
Caution: the reciprocal of property 4.4 is false. Consider the ANON-sentence ¢ = VxIy

(x =y Ax Y y) and the model 9 with domain M = {a, b} consisting of only two elements a and b.
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Then ¢f = Vx3y(x = y), and so M E ¢f. But M # ¢, and as ¢ is a sentence, then Fp = ¢, and so
M ¥ Fy. Hence ¢ # Fo.
As a consequence, Fg needs not be logically equivalent to ¢f, even for ¢ that are already flat.

4.2 Basic properties of the flattening operator

We start by stating some simple facts about the application of the flattening operator to the most
well-known atoms of dependency. The proofs are straightforward and are thus omitted.

PROPOSITION 4.6.

(i) for first-order literals «: Fa = «,

(ii) for dependency atoms: F(=@,0) =T,
(iii) for anonymity atoms: F(f; Y ) = L,
(iv) for inclusion atoms: F(7, C i) = = b,
(v) for exclusion atoms: F(7| | i) =1 # 1o,
(vi) for independency atoms: F(i, 13, ) =T.

We now state simple properties about the distributivity of the flattening operator with respect to
the Boolean connectives. The proof of the next proposition is a routine application of the semantics.

PROPOSITION 4.7.
For any team-based formulas ¢, ¥ it holds that

F(op A ) =Fp AFyr.
If, ¢, Y are both satisfied by the empty team, then additionally
Flovy)=FpVvFy.

When the logic does not have the empty team property, this proposition does not hold. A counter-
example is provided by the formula (¢ # d Ax = ¢ ANE) Vv (¢ # d A x = d A NE), where NE is
satisfied by a team if and only if this team is non-empty.

We continue by studying the commutativity of the flattening operator with the quantifiers.

DEFINITION 4.8.
A formula ¢ is called downwards flat (DF) if

mingo = Vs EX,EDT':{S}(,D

for all models 97 and for all teams X over 9 such that dom(X) 2 FV(g). Similarly, ¢ is called
upwards flat (UF) if

(Vs e X, MFEy ) = MEx ¢
for all models 991 and for all teams X over 91 such that dom(X) D FV ().

We sum-up the relations between the different flatness notions we introduced so far in the
Figure 1.

One can easily remark that the property of downwards closure is strictly stronger assumption than
downwards flatness. However, it will be a sufficient assumption for the following propositions.
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12 The flattening operator in team-based logics

<pf cflat> Fop

FIGURE 1. Relation between all flatness notions.

PROPOSITION 4.9.

(1) If Ixvg is downwards flat, then F(Ixp) F IxFop.
(ii) If Ixe is upwards flat, then IxFp F F(3xgp).

PROOF. We consider the proof of the first claim. Let 2T be a model, and let X be a team over I
such that dom(X) 2 FV(g). Then

M Ex F(3xep)
= Vs € X, M Fi Ixg
= Vs € X,3H : {s} > P*(M), M E(g11/x ¢ (semantics of 3)
= 3H' : X — P*(M),Vs € X, M Egim)x) ¢
= 3H' : X — P*(M),Vs € X,Vs' € {s}[H/x] , ME(} @ (downwards flatness)
= 3H' : X — P*(M),Vs € X [H'/x] , My ¢
= 3H' : X — P* (M), M Expyx Fo
= M Fx Ix(Fp) 0

PROPOSITION 4.10.

(1) if Vxg is downwards flat, then F(Vx¢) F Vx(Fg),
(ii) if Vxg is upwards flat, then Vx(Fg) F F(Vxg).

PROOF. Again we consider the proof of the first claim only as the proof is similar in the second case.
Let 9 be a model, and let X be a team over 9t such that dom(X) D FV(¢). Then

M Ex F(Vxp)
= Vs € X, M k5 Yxp
= Vs € X, M Fmyx @
= Vs € X,Vs' € {s} [M/x], ME} ¢ (downwards flatness)
— Vs € X [M/x], M E(y @
= M Exquyx Fe
= M Ex Vx(Fp)
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4.3 Preservation of closure properties
The proof of the next lemma is a routine application of the semantics.

LEMMA 4.11.
Fo is always downwards closed and union closed.

COROLLARY 4.12.
Let £ be a team-based logic extending FO by some dependencies and some operators from among
{n,Vv,3,V}.
(i) If £ is downwards closed (resp. union closed, resp. downwards flat, resp. upwards flat), then
sois L(F).
(i) If L is flat, then £ = L(F).

5 The expressive power of the flattening operator

We ask now, does the flattening operator, when added to a logic, increase the expressive power of
the logic? Following [14], the flattening operator F is said to be safe for a team-based logic L if
L = L(F). The idea is that the operator F can be ‘safely’ added to the logic, as it does not increase
its expressive power. In this section we systematically study the effect of F to the expressive power
of various team-based logics.

5.1 Adding F to inclusion and anonymity logic

The goal of this subsection is to show that inclusion logic together with the flattening operator
FO (g, F) is equivalent to the positive fragment of greatest fixed-point logic GFP™. From this it
follows that FO (g, F) has exactly the same expressive power as FO(C) by the results of [15].

Recall that the semantics we take for GFP™ is the standard Tarskian semantics. Therefore the
semantics of GFP™T is defined in terms of individual assignments rather than teams, and so the
equivalences between GFP™ and FO(C) and between GFP™ and FO (g, F) (both on the level of
formulas) must be formulated in an indirect way, as it was done in [15] and as it will be done in
Theorem 5.1. In the following, we use (901, R := X (X)) to denote the expansion of 9 by the relation
symbol R, interpreted as X (x).

THEOREM 5.1.
For every FO (g, F) -formula ¢(¥) with free variables in X = (x1,...,x,) there is a GFP"-formula
¢* = ¢*(R,X) such that ar(R) = n, R occurs only positively in ¢*, and the condition

MExy o) iff (MLR:=XX) F; o*(R,X) foralls e X
holds for all models 9t and all teams X over 99t with dom(X) D {x1,...,x,}.
PROOF. The proof is by structural induction on ¢. The cases for first-order literals, inclusion
atoms, connectives, and quantifiers are treated as in [15, Theorem 15]. We show the inductive case

corresponding to F.
If (%) is of the form F v (¥), then we define

¢*(R,X) = V3(—Ry V 0 (X, 7))

where 6(%,7) = ¥*(S,%) [(y =1)/S(@], that i is, 6 is the formula ¥*(S,%) in which we replaced
each atom of the form S(7) by the atom y = 7. Let 9t be a model and X be a team over 9 with
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14 The flattening operator in team-based logics

dom(X) D {x1,...,x,}. One can remark that
MEx FY(X) < VseX. M E ¥ (X)
= VseXVs elst. OM,S ={s}]®) Fy ¥v*(S,X) (by IH on ¥ (%))
= VseX. N, S = {s} X)) Es ¥*(S,%)
& Vs e X. (M, S = {s()}) Fs ¥ (S, %)
— Vs e X. M Es ¥ (8,5 [(s@) =1)/SD)] (5.1

The last equivalence is justified by the following observation: as S is assigned to a relation
with a unique element s(¥), having an atom of the form S(7) in ¥* is equivalent to have the atom
s(X) = 7 instead (we do the test ‘by hand’), so we perform this substitution in y* while preserving
equivalence.

Now, suppose M Fx F (%), then condition 5.1 holds. We want to show

(M, R = X®) Fs VPRY = ¥*(S,%) [( =1)/S@]) foralls e X
To do so, let b e M such that b € X (X). Then there is an assignment s € X such that b= s(x), we
fix such an assignment. And by condition 5.1 we obtain

M=, 9 (5,5 [(b =TS0 ]
Conversely, suppose that

(M, R = X)) By VWRY > ¥*(S.%) [ =1/SD]) foralls e X
So by taking ¥ := s(x), as s¥) € {s(x) | s € X} & (%), then the condition ‘R’ is satisfied, so we
get

M Es ¥*(S,5) [(s&) =7)/S(@)] foralls e X

and the result follows from condition 5.1. O
COROLLARY 5.2.

(i) The logics FO (C, F) and FO(C) are equivalent for sentences.
(ii) The logics FO (Y, F) and FO(Y) are equivalent for sentences.

PROOF. The first claim follows by Theorem 5.1.
The second claim follows from the fact that inclusion atoms can be expressed using anonymity
atoms and vice versa [13]. O

5.2 Adding F to unary inclusion logic

Galliani [14] proved that constancy atoms increase the expressive power of unary inclusion logic.
More precisely, he proved that non-connectedness of graphs can be expressed using constancy atoms
and unary inclusion atoms, but not in terms of unary inclusion atoms alone. The next proposition
shows that the same effect can be obtained using F and inclusion atoms.

NOTATION 5.3.
Let ¢ is a first-order formula, and let i be a team-based formula. We will then denote ¢ — 1 as
an abbreviation for —¢ Vv (¢ A ¥).
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We thank Pietro Galliani for suggesting the following proposition.

PROPOSITION 5.4.
The following FO (gl, F) sentence

P (FEx(x #y AVz(E(x,2) — z € X)))) (5.2)
is true in a graph & = (V/, E) if and only if the graph & is disconnected.

PROOF. It is straightforward to check that the formula above is logically equivalent with the formula
used in [ 14] to show the same result. The point is that ‘Jy(F ... )’ essentially quantifies over singleton
subteams. The formula then asks with 3x whether there is a subset of vertices different from y, which
is closed under the edge-relation £. More exactly, suppose a graph (V, E) satisfies the sentence (5.2).
Let W # ¢ interpret the quantifier ‘3y’ of (5.2). Let a € W. Now the singleton team {a} satisfies
the subformula of (5.2) starting with ‘Ix’. Let U # ¢ interpret this ‘Ix’. Then a ¢ U and U is
closed under the edge-relation £. Hence (V, E) is disconnected. Conversely, suppose W and U are
non-empty disjoint connected components of a graph (V, E). We use W to interpret the quantifier
3y’ of (5.2). Suppose a € W is given. We can let U interpret the quantifier ‘3x’ in (5.2). This shows
that (5.2) is true in the graph. U

COROLLARY 5.5.
The flattening operator F increases the expressive power of FO(C1).

It remains open whether F increases the expressive power of higher arity inclusion logic. It should
be noted, however, that if we do not focus on the arities of the inclusion atoms, we have Corollary 5.2.

5.3 Adding F to unary anonymity logic

5.3.1 Expressivity of unary anonymity atoms and the flattening operator For any n € N, we denote
by 2, a graph consisting of two cycles each of length 2"+! and B, a graph consisting of a single
cycle of length 22,

PROPOSITION 5.6.
The following FO(Y, F) sentence

WF@( £ x AVZE@W,2) = C£XAYy Yz Az T Y))

is true in the models 2, and is false in 5,,.

PROOF. The intuition behind this FO (T1 , F) -sentence is as follows: consider a cycle of even length.
We would like to fill it completely with variable assignments, in order to be able to detect if there
exists another node in the graph that is not part of the considered cycle. To do so, we are going to use
the mechanism of the anonymity atom to fill this cycle. More precisely, we will partition the cycle
into two sets of nodes, that will be assigned to y and z respectively, in such a way that there will be
an alternation between the values taken by y and z along the cycle. This is illustrated in the Figure 2.

This filling process is done via the sub-formula E(y,z) < (¥ T z A z Y y). Here, the black node
o in the Figure 2 corresponds to a starting value for the variable y. Then E(y,z) < y Y z forces
the variable z to take two different values z; and z’1 that are in fact the two adjacent vertices of yy.
Then E(y,z) < z Y y firstly forces the variable y to take two different values y, and yq that are in
fact the two adjacent vertices of z1, and secondly forces the variable y to take two different values )/,
and yy that are in fact the two adjacent vertices of z;. And so on. At the end, as the considered cycle
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A S -

FIGURE 2. Illustration of the anonymity atom mechanism to fill a cycle.

is of even length, then the last two values assigned to the variable z actually coincide. Such filled
components then satisfy the clause Vz(E(y,z) < y Tz Az Y ).

The whole objective will be to succeed in distinguishing the graphs 2, from the graphs 95,. In
fact, the graphs 2, and 8, are all composed of one or two cycles of even length.

At the end of the filling process, we obtained a cycle filled with an alternation of values for the
variables z and y. In order to distinguish 2, from ‘B,, we need to find an x such that it does not
belong to the alternation of y and z. Hence, we need to check both that y # x and z # x, which gives

VEXAVZ(EW,2) > C#xAyYzAzYy))

The end of the construction of the desired formula is identical to the one we made for the unary
inclusion logic together with the flattening operator F, and at the end we finally get

WFAYQY £ xAVZEQ,2) > @#x Ay YT zAzTY))))

By construction, it is clear that this formula is true for the graphs I, but is false for the graphs
B,. O

5.3.2 Unary anonymity logic does not express non-connectedness The next technical lemma will
be used to show that the structures 2(, and ®5, from the previous section cannot be separated by
formulas of unary anonymity logic.

Let 91 be a model, let X be a team over 91, and let & € Aut (91). Then we define the team closure
of X under F, written Cl £ (X), as the set of all assignments obtained by applying all automorphisms
from F to all assignments of X, that is

Clr) E{r () | s e X.f € F}

For F = Aut (9), we simply write C1 (X) instead of Clayon) (X), that is

L) E{f (5) | s € X,/ € Aut (M)}

Recall that a magma is a set M equipped with a binary operation * that sends any two elements
from M to another element in M, and in this case we call x an internal binary operation. We call a
unitary magma any magma whose internal binary operation admits a neutral element (which is then
unique), that is, if there is e € M such that forallm € M we getexm = mx e = m.
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LEMMA 5.7.

Let 9 be a model. Let F € Aut(9N) be a unitary magma such that for any two points m,my € M
there exists an automorphism f* € F such that f(m;) = m and f(m2) # my. Then for all teams X
over M such that Cl =(X) = X and all formulas ¢ € FO(Y) with free variables in dom(X) we have
that

MEy @ iff MEy ¢

PROOF. It suffices to show the right to left direction that is proved via structural induction. The proof
for the connectives and quantifiers are similar to that of Lemma 21 in [14].

Assume ¢ = x1 T x2. As (x1 Y xz)f = T we need to prove that 9 Fxy x; Y x, only from the
hypothesis of the lemma, that is, whenever X is a team whose domain contains the variables x; and
xz and such that X' = Cl (X). But this is the case. Indeed, suppose that s(x;) = m) and s(x2) = m;.
Then by assumption of the lemma, there is an automorphism f € F such that f(m) = m; and
f(m2) # my, and since X = Cl (X) there exists some assignment s’ € X such that s = f(s), that
is, s’ (x) = f(s(x)) for all x € dom(s). This implies in particular that

s'(x1) = f(s(x1) = f(my) = my = s(x1)
s'(x2) = f(s(x2)) = f(m2) # my = 5(x2)

and thus, for any assignment s € X there exists some assignment s’ € X such that s'(x;) = s(x;) but
s’ (x2) # s(x2). This shows that 9 Fx x1 Y x2, as required. O

COROLLARY 5.8.
The flattening operator increases the expressive power of unary anonymity logic.

PROOF. By Proposition 5.6, the formula @ separates the models 2(, and ®B,. Assume for a
contradiction that @ is equivalent to some ¢ of unary anonymity logic. By Lemma 5.7, ¢ is
equivalent to (pf in the models 2(,, and B,,, that is

Ay ol = B, E

where ¢f is a first-order formula. But by an Ehrenfeucht—Fraissé game argument, this is impossible.
Namely, if the first order o' has quantifier rank #, then player II has a winning strategy in the
Ehrenfeucht—Fraissé game of length n between 2{,, and ‘B,,, whence the models cannot be separated
by ¢f. The strategy is essentially described in [17, p. 181]. O

5.4 Adding F to dependence, exclusion and independence logic

In this section we show that FO(=(, -), F) has exactly the same expressive power as FO(=(:, -)). We
will use the same strategy as in subsection 5.1. More precisely, we will show that FO(=(-,-),F) €
ESO, and as it is well known that ESO = FO(=(, -)), we will obtain the result. The same idea
works also for exclusion and independence logic.

Exactly as for inclusion logic and GFP™ (Theorem 5.1), we have to adapt the equivalence between
FO(=(., ), F) and ESO because they do not use the same semantics.

Recall that a sentence ¢ (R) from second-order logic is called downwards closed if (M, A) F ¢ (R)
and 4" C 4 imply (M, 4") = ¢(R).

LEMMA 5.9.
For every FO(=(-, -), F)-formula ¢(x) with the free variables in X = x1,...,x,, there is an ESO-
formula ¢* = ¢*(R) that is downwards closed and such that ar(R) = n, and that satisfies the
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following condition:
MEy o) iff (MLR:=XX)E ¢*(R) VvV VX-R(X) (5.3)
holds for all models 9t and all teams X over 9t with dom(X) D {X}.

PROOF. We consider the inductive case corresponding to ¢ = Fir as the other cases can be dealt
with analogously to [31, Theorem 6.2]. It turns out that the formula ¢* that we need to take is exactly
the same as for the translation from FO(C, F) to GFP™, which is clearly in ESO assuming v* is.[]

COROLLARY 5.10.

The operator F does not increase the expressive power of dependence and exclusion logic.

PROOF. This follows by Lemma 5.9 as any downwards closed ESO-formula ¢(R) can be translated
into a dependence logic formula satisfying (5.3), see [24, 25]. The claim for exclusion logic follows
from the fact that exclusion atoms can be expressed using dependence atoms and vice versa [13]. U

COROLLARY 5.11.
The operator F does not increase the expressive power of independence logic.

PROOF. The proof is analogous to the case of dependence logic using the analogue of Lemma 5.9
(without the assumption of downward closure) ans its converse shown in [13]. O

It remains an open question, as pointed out by the referee, whether there is any (non-trivial)
downward closed logic whose expressive power increases when F is added.

5.5 Adding F to fragments of dependence logic

We begin by showing that the flattening operator reduces to the flattening of a formula for existential
dependence logic formulas.

PROPOSITION 5.12.
If ¢ € FO(=(-,-)) is existential then Fg = ¢,

PROOF. Recall that M Ex Fo iff M Fy ¢, forall s € X. Now it is easy to show using induction on ¢
using downwards closure (and singleton-valued supplements functions) that 901 =) ¢ iff I F(y o'
for any singleton team {s}, from which the claim follows. ([l

Next we turn to the so-called constancy logic the formulas of which has the following normal form.

PrROPOSITION 5.13 ([13]).
Let o(x) € FO(=(-)). Then g is logically equivalent to a constancy logic formula of the form

3&( A\ =0 A a@}))
i
for some first-order formula «.

PROPOSITION 5.14.

The operator F does not increase the expressive power of constancy logic, that is FO(=(-),F) =
FO(=()).

PROOF. We prove the claim using induction on ¢ € FO(=(-), F). We consider only the case where
¢ = F. By the induction hypothesis and the previous lemma, we get that ¥ is equivalent with some
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formula in the normal form:

3;(/\ =) A 01(36,)7))

for some first-order formula «. It now follows from Proposition 5.12 that ¢ = Jya. (]

5.6 Adding Fto FO with the Boolean negation
In this section we consider the effects of adding F to FO(~) (also denoted by FON in the following).

DEFINITION 5.15.
Let ¢ be a o-formula, 9t a o-model and X a team over 9t such that dom(X) 2 FV(¢). We define
the truth of the formula ~¢ (the Boolean negation of ¢) in the model 9t and the team X as:

MEx ~¢ <= MFEx @
We will use the following notation from [26]:

e Egp def ~—@, meaning that at least one assignment in the considered team satisfies the first
order formula ¢. Here —¢ refers to the dual of ¢ i.e. the formula obtained from, what is usually
written as —g, by pushing negation all the way to the atomic formulas;

e QY def ~(~@p A~),sothat M Ex ¢ @ ¢ iff M Exy ¢ or M Ex ¥, which corresponds to
the Boolean disjunction (a.k.a. intuitionistic disjunction).

We will utilize the following normal form theorem.

PROPOSITION 5.16 ([26]).
Let ¢(X) € FO(~). Then ¢ is logically equivalent to a formula of the form

@ ai/\/\EﬂiJ

iel Jjedi
for some finite sets / and J; and for first-order formulas «; and B;; for all i € / andj € J;.

PROPOSITION 5.17.
FO(~,F) = FO(~).

PROOF. To prove the non-trivial direction (=), we need to show that for all ¢(x) € FO(~, F), there
is ¢*(¥) € FO(~) such that for all models 90t and for all teams X over 9t such that dom(X) 2 {¥},
the following holds

MEy (X)) <= MEyx ¢* )

We prove it by structural induction on ¢. The only interesting case is when ¢ (¥) = Fy/ (X).
According to Proposition 5.16, we obtain

v@ =) [« \EBy

iel jeJdi
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. [Fo (L,F) "= Fo (L)]\

FO(C,F) 27 Fo () FO (=), ) ""Z"* FO (=(, ) ’
=FO(T) “2* FO (T,F) =Fo () """ Fo(,F
FO (Ca, F) Iv ‘v FO (2, F)
=7 [Fo(<s) FO(l2)] <
C%S Vi Vi FO (=1(-,-),F)
Sro(ty) FO(=1(,)] <"
FO(C4,F) cors.s VI Gans) FO (C1.=(")) 4 FO (|1,F)
D EE) En
\Y \Y
(FO(X0)="FO (To,F)) [Fo (~, F) P O (N)] [Fo (=(),F) "= Fo (:(-))]
v v v
cor.4.12

FIGURE 3. Expressive power of logics on the level of formulas.

for some finite sets / and J; and for first-order formulas o; and B;; for all i € / and j € J;. It is now
a routine application of the semantics to show that ¢ is equivalent with the first-order formula

\/ Oli/\/\ﬁi,;' ,

iel jedi

using the facts that in singleton teams E is equivalent to 8 and that

(for alls e X : M iy () (pi) iff My \/ e
i i

for first-order formulas ;. O

6 Summing up expressive powers

We sum up all the previous results in the following Figure 3. It shows when a fragment is comparable
to another in terms of expressive power, and when it is the case, it indicates which fragment is more
expressive than another. The red edges are the comparisons that are not known at the moment, but
which we believe to be true. These questions have some echoes in finite model theory where beyond
the seminal and old results about the monadic case (i.e. arity 1) of existential second order logic,
very few separation results are known [2, 3, 12]. Considering the tight connections between arity
based fragments of existential second order logic and of some team logics [9], such a situation is all
but surprising.
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7 Conclusion

We have explored the flattening operator F within the framework of team semantics, a powerful
extension of classical first-order logic that allows for a more powerful treatment of dependencies
and independencies in logical formulas. The flattening operator was originally introduced by Wilfrid
Hodges in 1997 [21], but its potential and implications have remained largely unexplored until now.

Through our investigation, we demonstrated that the introduction of the flattening operator F
does not add expressive power to logics such as dependence logic, inclusion logic, constancy logic,
inconstancy logic and FO(~). It turns out that this is not the case with the fixed arity fragments
of these logics. For example, we have seen that unary inclusion logic with the flattening operator
FO (gl, F) is strictly more expressive than unary inclusion logic FO(C). We conjecture that the
same is true of all the other fragments of fixed arity, too.

The work presented here opens several avenues for future research. One possible direction is the
further exploration of the computational complexity associated with the translation of some logic
fragments augmented with the flattening operator into SAT problems, along the lines of [11].
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