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Abstract 
We propose a systematic study of the so-called f lattening operator in team semantics. This operator was first introduced by 
Hodges in 1997, and has not been studied in more detail since. We begin a systematic study of the expressive power this 
operator adds to the most well-known team-based logics, such as dependence logic, anonymity logic, inclusion logic and 
exclusion logic. 

1 Introduction 

Team semantics is a mathematical framework for studying concepts and phenomena that arise in the 
presence of plurality of data. Examples of such concepts are, for example, functional dependence 
in database theory and conditional independence of random variables in statistics. The beginning of 
the area can be traced back to the introduction of dependence logic in [31]. In dependence logic, 
formulas are interpreted by sets of assignments (called teams) and it extends the syntax of first-
order logic by dependence atoms =(x, y) expressing that the values of the variables x functionally 
determine the values of y in a t eam.

Since the introduction of dependence logic, the expressivity and complexity aspects of logics in 
team semantics have been extensively studied (see e.g. [10]) and interesting connections have been 
found to areas such as database theory [19, 23], Bayesian networks [6], quantum foundations [1] 
and inquisitive and separation logic [5, 18]. These works have focused on logics in the first-order, 

Vol. 35, No. 6, © The Author(s) 2025. Published by Oxford University Press. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:// 
creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
https://doi.org/10.1093/logcom/exaf045 

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/6/exaf045/8244578 by guest on 09 N
ovem

ber 2025

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/logcom/exaf045


2 The f lattening operator in team-based logics

propositional and modal team semantics, and more recently also in the multi-set and probabilistic 
settings [1, 7, 8]. 

A defining feature of team semantics is that satisfaction of a formula is defined with reference 
to a set of assignments, not just a single assignment, as is the case in classical first-order logic. In 
this respect, logics with team semantics resemble modal logic, where a Kripke structure offers a 
spectrum of possible assignments. In a Kripke structure, there is the so-called accessibility relation, 
which brings in the aspect that assignments, for example, develop in time. This makes it possible to 
talk in modal logic about necessity and possibility. Team semantics is more rigid. There is just the 
set (called team) of assignments without any built-in relations between its elements. However, this 
makes it possible to express interesting and highly non-trivial ‘combinatorial’ properties of variables, 
such as the aforementioned functional dependence but also inclusion and exclusion atoms [13] and 
independence atoms [16]. 

We can think of the sub-team relation as an accessibility relation, and then ‘necessity’ and 
‘possibility’ make perfect sense. Then ‘necessarily φ’ means ‘φ is true in every sub-team’, and 
‘possibly φ’ means ‘φ is true in some non-empty sub-team’.

Some formulas do not seem to take advantage of the existence of a team around an assignment. 
One way to make this phenomenon exact is the following: a formula φ is called f lat,  or  is  said  to  
satisfy the f latness criterion, if for all model M and for all team X the following holds 

M �X φ ⇐⇒ ∀s ∈ X : M �{s} φ . (1.1) 

This criterion holds for first-order formulas (that do not contain new non-classical atoms) φ, i.e. all 
first-order formulas are f lat. This offers a method to show that some given formula is not logically 
equivalent to a first-order formula. One just shows that the formula is not f lat. To take two simple 
examples, =(x, y) is not f lat, hence it cannot be logically equivalent to a first-order formula, which 
is intuitively obvious but still needs an argument. Flatness provides such an argument. In general, 
the problem of deciding whether a given dependence logic formula is equivalent to a first-order 
formula is highly undecidable. Therefore, the question of first-order expressibility is non-trivial and 
any method, ev en a partial one, is useful.

One can say that f lat formulas are, in a sense, ‘local’, in that their truth is determined by what holds 
for single assignments. Still, non-trivial properties of teams can be expressed. For example, x = y is 
f lat and it says that the variables x and y have the same value in the team. It is a trivial property of a 
team but still such teams are clearly distinguished from totally arbitrary teams. Flatness just means 
that the distinguishing property is ‘f latly spread out’ in the team.

One might think that f latness of a formula is ref lected in the formula being built from f lat 
elements. But all sentences are f lat because their truth in any non-empty team is determined by their 
truth in {∅}, i.e. the team containing only the empty assignment. A sentence expresses something 
about the model that the team is based on. A sentence says nothing about any team. The f latness of 
sentences is, therefore, like an anomaly. But it follows that being f lat is not equivalent to being, up 
to logical equivalence, first-order. A f lat formula may very well have non-f lat sub-formulas. 

EXAMPLE. 
We consider a signature with a 2-ary relation R(·, ·). Consider the following formula φ(x) 

∃u(R(x, u) ∧ ∀v(R(x, v) → ∃w(R(x, w) ∧ =(w, v) ∧ w 	= u))). 

This is satisfied by a team X if for every assignment of the variable x in the team X ,  the  set  R(x, ·) is 
infinite. It is a f lat formula, but its sub-formula =(w, v) is not f lat. Thus, condition (1.1) only says 
that φ itself behaves in a first order way by being f lat, but its sub-formulas need not do so.
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The f lattening operator in team-based logics 3

The class of teams satisfying a f lat formula is closed downwards and closed under unions and 
intersections. There is a maximal team, and the class of teams satisfying a f lat formula is precisely 
the power-set of that team. The maximal team of a f lat formula φ is given by{

s
∣∣ M �{s} φ

}
. 

Thus the dimension (in the sense of [20]) of a f lat formula is always 1. 
We can make an arbitrary formula f lat by using the following new logical operator, first introduced 

by Hodges in 1997 [21], called the f lattening operator and denoted here by F: 

M �X Fφ ⇐⇒ ∀s ∈ X : M �{s} φ . (1.2) 

Thus, Fφ is always f lat, and for a f lat formula φ,  we  have  φ ≡ Fφ. The f lattening operator is 
somewhat similar to the necessity operator �φ and the possibility operator ♦φ from Modal Logic. 
The ‘mode’ of φ that Fφ brings about is not that φ is ‘necessary’ or ‘possible’, but that on the 
question whether the entire team satisfies φ or not, at least we know that φ is true in singleton sub-
teams. We can perhaps anticipate that Fφ is computationally much simpler to check for satisfaction 
than φ itself, since we have to check only single assignments. However, if φ is a sentence, then 
Fφ ≡ φ. So Fφ may be computationally as complicated as φ itself.

The f lattening operator F makes an arbitrary formula f lat. This happens with no regard to what the 
formula looks like inside. There is another way to make a formula f lat. This is based on changing the 
formula inside as follows: the f lattening φf of a formula φ is obtained inductively by replacing non-
first-order atomic formulas by something that is f lat. If there are non-first-order logical operations, 
then they are similarly replaced by something f lat. We can impose axioms for the f lattening, because 
it is a  priori  not clear what it is. There may be different ways to f latten a formula, but we expect 
them all to satisfy some basic axioms. This will be discussed in Section 3. 

Although Fφ is always f lat, it is not always equivalent to φf. We can use the f lattening of a formula 
to define a kind of negation of a formula: we take the f lattening φf, which is first-order, and then 
apply negation to the f lattening.

A weaker version of f latness is the following: a formula is downwards f lat if 

M �X φ �⇒ ∀s ∈ X : M �{s} φ . (1.3) 

Thus, the truth of φ in a team is inherited by the singleton sub-teams. Of course, downwards closed 
formulas are downwards f lat, but not necessarily f lat. An example is =(x, y). Every singleton team 
satisfies =(x, y) but not every team satisfies =(x, y ).

A similar weaker version of f latness is the following: a formula is upwards f lat if 

(∀s ∈ X : M �{s} φ) �⇒ M �X φ . (1.4) 

So for the truth of φ in a team, it is enough that φ ‘gathers’ truth from little singleton pieces inside 
the team.

Still another variation of f latness is n-coherence (introduced in [22], see also [27] and [4]): 

M �X φ ⇐⇒ (∀Y ⊆ X such that |Y | = n, M �Y φ). (1.5) 

Usually, f latness corresponds in this terminology to 1-coherence. For example, dependence atoms 
are not f lat but they are 2-coherent. In [ 22], it is shown that n-coherence is preserved by conjunction 
but not by disjunction, except if one of the disjuncts is 1-coherent. The disjunction of two dependence 
atoms need not be n-coherent for any n. The model-checking problem for n-coherent formulas is in 
LOGSPACE. Model-checking of the disjunction of two 2-coherent formulas is in NLOGSPACE. 
In [22], it is asked whether there is a dependence logic formula that is not k-coherent for any k but 
which is ‘

√
n-coherent’?
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4 The f lattening operator in team-based logics

Coherence, just like f latness, can be approached from the point of view of an operator as well. The 
n-coherence operator applied to a formula says of a team that every sub-team of size n satisfies the 
formula. The co-n-coherence operator applied to a formula says of a team of size m that every sub-
team of size m−n satisfies the formula. The co-n-coherence operator is a way to say that a formula is 
approximately satisfied by the team. In [32] the approximation is more generous (proportional). We 
can even let an operator say that the team satisfies the formula even if any n assignments satisfying 
a given fixed first order formula are added to the team or taken away from the team. So, the team 
satisfies the formula even if it is made a little smaller or a little bigger. It is a kind of ‘give or take at 
most n’ operator. Dependence logic is closed under all these operators. We will not pursue this line 
of argument further in this paper. 

Our contributions We study the effects of extending several team-based logics by the f lattening 
operator of Hodges. We also take a new look at the concept of a f lattening of a formula that 
has been utilized in several works in the area. In Section 2 we recall the basic concepts and 
definitions relevant for this work. In Section 3 we show that the f lattening of a formula can be 
characterized axiomatically but also give explicit inductive definitions of it for the most prominent 
team-based logics. In Section 4 we introduce the f lattening operator and study its interactions with 
the aforementioned logics. In Section 5 we show that the f lattening operator increases the expressive 
power of the unary fragments of inclusion and anonymity logics. These results show that the two 
different ways of defining a f lattening of a formula are not in general equivalent. 

2 Preliminaries 

In this section, we will brief ly recall the notation used in this work, the definition of team semantics, 
and some basic results that will be used in the rest of this work. Through all of this work, we assume 
that we have countable sets of individual variable symbols xi, yi, zi,  etc.  for  i ∈ N, and of relation 
variable symbols Xi, Yi, Zi,  etc.  for  i ∈ N of all arities. We will use Fraktur font to represent models, 
such as A, B, M, etc. and use Roman font to represent their corresponding domain A, B, M ,  etc.  
We assume throughout that the domains of models have at least two elements. This assumption is 
made to avoid some trivialities arising with models whose domain is a singleton. We will write �x, �y,
�z and so on to describe tuples of variable symbols; and likewise, we will write �a, �b, �m and so forth 
to describe tuples of elements of a model. Given any set A, we will furthermore write P(A) for the 
powerset

{
B

∣∣ B ⊆ A
}

of A, and P∗(A) for P(A) \ {∅}.

2.1 Team semantics 

If s is an assignment, we write s [m/v] for the assignment in which we substituted the variable v by 
the value m. We recall from [31] the following concepts: a team X is any set of assignments for a 
fixed set of variables, denoted dom(X ). Suppose now X is a team. It is sometimes useful to think of 
X as a relation in the following sense: suppose x1, .  .  .  , xn ∈ dom(X ). We obtain from X the n-ary 
relation X (x1, .  .  . , xn) =

{〈s(x1), .  .  . , s(xn)〉
∣∣ s ∈ X

}
.  If  m is an element of the domain M of our 

model M, then X [m/v] is the team consisting of all s[m/v], where s ∈ X .  We  use  X [M/v], called 
the duplication of X at v, to denote the set of all s[m/v], where m ∈ M and s ∈ X . Finally, if 
H : X → P∗(M), then X [H/v], called the supplementation of X at v by H , is the team consisting of
all s[m/v], where s ∈ X and m ∈ H(s).

For our purposes, it will be useful to first present team semantics for first-order logic proper, and 
then progressively add new atoms (dependency, non-dependency, inclusion, exclusion, etc.).
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The f lattening operator in team-based logics 5

We recall the usual definition of team semantics (in its lax formulation). For the sake of simplicity, 
it is assumed that all expressions are in negation normal form, meaning that negations ¬ only appear 
in front of first-order literals.

DEFINITION 2.1 (Team semantics for first-order logic). 
Let σ be a first-order signature. Let M be a first-order σ -model, let ϕ be a first-order σ -formula, 
and let X be a team over M such that dom (X ) ⊇ FV (ϕ). Then we define the relation M �X ϕ by 
induction over the structure of the formula ϕ as follows: 

TS-lit: If ϕ ≡ α where α is a first-order σ -literal, then M �X ϕ if and only if for all assignments 
s ∈ X it holds that M �s α (here according to Tarskian semantics). 

TS-∨: If ϕ ≡ ψ1 ∨ ψ2 where ψ1 and ψ2 are first-order σ -formulas, then M �X ϕ if and only if 
there exist some teams Y and Z (not necessarily disjoint) such that X = Y ∪ Z, M �Y ψ1 
and M �Z ψ2. 

TS-∧: If ϕ ≡ ψ1 ∧ ψ2 where ψ1 and ψ2 are first-order σ -formulas, then M �X ϕ if and only if 
M �X ψ1 and M �X ψ2.

TS-∃: If ϕ ≡ ∃vψ where v is a variable symbol and ψ is a first-order σ -formula, then M �X ϕ if 
and only if there exists some H : X → P∗ (M) such that M �X [ H/v] ψ .

TS-∃: If ϕ ≡ ∀vψ where v is a variable symbol and ψ is a first-order σ -formula, then M �X ϕ if 
and only if M �X [M/ v] ψ .

If it is the case that M �X ϕ, then we say that the model M together with the team X satisfy ϕ, and 
if it is not the case, then we say that the model M together with the team X do not satisfy ϕ and we 
write it M �X ϕ.  If  ϕ is a sentence (i.e. has no free-variables), we say that ϕ is true in M according 
to team semantics, and we write it M � ϕ,  if  M �{∅} ϕ where {∅} is the team containing only the 
empty assignment. Otherwise, we say that ϕ is false in M according to team semantics, and we write
it M � ϕ.

We recall the most well-known team-based logics. We first give definitions for dependence atoms, 
introduced in [31]. Let k ∈ N.  If �t1 is a k-tuple of σ -terms and t2 is a σ -term, then =(�t1, t2) is called 
a k-ary dependence atom. For 0-ary atoms, called constancy atoms, we may simply write =(t2).  We  
define FV(=(�t1, t2)) = Vr(�t1) ∪ Vr(t2). The set of formulas of dependence logic over a signature σ , 
denoted by FO(=(·, ·)) [σ ] or even more simply DEP [σ ], is defined by adding dependence atoms 
of all arities to the definition of the set of formulas of FO [σ ]. By allowing only at most k-ary 
dependence atoms in the condition above, we obtain the fragment FO(=k(·, ·)) [σ ] or even more 
simply DEPk [σ ] called k-ary dependence logic.  If  M is a model and X is a team over M such that 
dom(X ) ⊇ Vr(�t1t2), then we define the truth of =(�t1, t 2) in the model M and the team X :

M �X =(�t1, t2) iff for all s, s′ ∈ X ,  if  s(�t1) = s′(�t1), then s(t2) = s ′(t2).

Next, we present so-called anonymity atoms also called non-dependency atoms [13], or afunc-
tional dependence atoms [28]. They have been studied, e.g. in [29, 30]. Let k ∈ N.  If �t1 is a k-tuple 
of σ -terms and t2 is a σ -term, then �t1 ϒ t2 is called a k-ary anonymity atom. The 0-ary anonymity 
atom, also called non-constancy atom, we simply write ϒt. We define FV(�t1 ϒ t2) = Vr(�t1)∪Vr(t2). 
The set of formulas of anonymity logic over a signature σ , denoted by FO(ϒ) [σ ] or even more 
simply ANON [σ ], is defined by adding anonymity atoms of all arities to the definition of the set 
of formulas of FO [σ ]. By allowing only at most k-ary anonymity atoms in the condition above, we 
obtain the fragment FO(ϒk) [σ ] or even more simply ANONk [σ ] called k-ary anonymity logic. If

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/6/exaf045/8244578 by guest on 09 N
ovem

ber 2025



6 The f lattening operator in team-based logics

M is a model and X is a team over M such that dom(X ) ⊇ Vr(�t1t2), then we define the truth of
�t1 ϒ t2 in the model M and the team X :

M �X �t1 ϒ t2 iff for every s ∈ X , there is s′ ∈ X such that s(�t1) = s′(�t1) but s(t2) 	= s ′(t2).

Next, we turn to inclusion atoms.  Let  k ∈ N.  If �t1,�t2 are k-tuples of σ -terms, then �t1 ⊆ �t2 is a 
k-ary inclusion atom. We define FV(�t1 ⊆ �t2) = Vr(�t1) ∪ Vr(�t2).  The  set  of  formulas  of  inclusion 
logic over a signature σ , denoted by FO(⊆) [σ ] or even more simply INC [σ ], is defined by adding 
inclusion atoms of all arities to the definition of the set of formulas of FO [σ ]. By allowing only at 
most k-ary inclusion atoms in the condition above, we obtain the fragment FO(⊆k) [σ ] or even more 
simply INCk [σ ] called k-ary inclusion logic.  If  M is a model and X is a team over M such that 
dom(X ) ⊇ Vr(�t1�t2), then we define the truth of �t1 ⊆ �t2 in the model M and the team X :

M �X �t1 ⊆ �t2 iff for all s ∈ X , there exists s′ ∈ X such that s(�t1) = s′(�t2).
Let us now recall (conditional) independence atoms.  Let  k1, k2, k3 ∈ N.  If �t1 is a k1-tuple, �t2 

a k2-tuple of σ -terms and �t3 a k3-tuple of σ -terms, then �t2 ⊥�t1 �t3 is a (k1,k2, k3)-ary (conditional) 
independence atom. We define FV(�t2 ⊥�t1 �t3) = Vr(�t1) ∪ Vr(�t2) ∪ Vr(�t3).  The  set  of  formulas  of  
(conditional) independence logic over a signature σ , denoted by FO(⊥) [σ ] or even more simply 
IND [σ ] is defined by adding independence atoms of all arities to the definition of the set of formulas 
of FO [σ ]. By allowing only at most (k1,k2, k3)-ary independence atoms in the condition above, 
we obtain the fragment FO(⊥k1,k2,k3) [σ ] or even more simply INDk1,k2,k3 [σ ] called (k1, k2, k3)-ary 
(conditional) independence logic.  If  M is a model and X is a team over M such that dom(X ) ⊇ 
Vr(�t1�t2�t3), then we define the truth of �t2 ⊥�t1 �t3 in the model M and the team X :

M �X �t2 ⊥�t1 �t3 iff for all s, s′ ∈ X ,  if  s(�t1) = s′(�t1), then there exists s′′ ∈ X 

such that s′′(�t1�t2) = s(�t1�t2) and s′′(�t1�t3) = s ′(�t1�t3).
Finally, we present the syntax and the semantics for exclusion logic.  Let  k ∈ N.  If �t1,�t2 are k-

tuples of σ -terms, then �t1 | �t2 is a k-ary exclusion atom. We define FV(�t1 | �t2) = Vr(�t1) ∪ Vr(�t2). 
The set of formulas of exclusion logic over a signature σ , denoted by FO(|) [σ ] or even more simply 
EXC [σ ], is defined by adding exclusion atoms of all arities to the definition of the set of formulas 
of FO [σ ]. By allowing only at most k-ary exclusion atoms in the condition above, we obtain the 
fragment FO(|k) [σ ] or even more simply EXCk [σ ] called k-ary exclusion logic.  If  M is a model 
and X is a team over M such that dom(X ) ⊇ Vr(�t1�t2). We define the truth of �t1 | �t2 in the model M
and the team X :

M �X �t1 | �t2 iff for all s, s′ ∈ X , it holds that s(�t1) 	= s′(�t2 ).

More generally, we will speak of team-based logic to speak of one of these logics based on team 
semantics (i.e. independence logic, anonymity logic, inclusion logic, exclusion logic or independence 
logic) and of team-based formula to speak of a formula from one of these logics (i.e. a formula 
that uses dependency atoms, anonymity atoms, inclusion atoms, exclusion atoms or independence 
atoms). 

2.2 Closure properties 

The logics that we have presented so far can be differentiated on the basis of their distinct closure 
properties. Let us start by defining the closure properties.
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The f lattening operator in team-based logics 7

DEFINITION 2.2. 
Let σ be a signature. A team-based σ -formula ϕ: 

• is said to have the empty team property if for any σ -model M, it holds that M �∅ ϕ (according 
to team semantics). 

• is said to be downwards closed if for all σ -models M and teams X over M, it holds that 

M �X ϕ �⇒ ∀Y ⊆ X ,M �Y ϕ. 

• is said to be union closed if for all σ -models M and collections
{
Xi

∣∣ i ∈ I
}

of teams Xi over 
M, it holds that

M �Xi ϕ for all i ∈ I �⇒ M �∪i∈I Xi ϕ.

• is said to be f lat  if for all σ -models M and teams X over M, it holds that 

M �X ϕ ⇐⇒ M �{s} ϕ for all s ∈ X .

One can remark that the f latness property is equivalent to the combination of the downwards 
closure and the union closure properties. 

Each of these properties is extended to team-based logics: a given logic (e.g. DEP, ANON, INC, 
EXC, .  .  . ) has some of these properties if all formulas of the logic have those properties. We can 
then split some of the well-known team-based logics between the ones that are downwards closed 
and the ones that are union closed.

3 Flattening of a formula 

We will now introduce the f lattening of a formula ϕ, denoted by ϕf, where ϕ belongs to some team-
based logic. The notion of ‘f lattened formulas’ was first defined in [31] and then used e.g. in [33]. 

The idea of f lattening is that it reveals ‘superficial’ information about the formula i.e. information 
that has apparently nothing to do with the team semantical atoms. For example, the formula ∀x∃y(x⊥ 
y ∧ x 	= x) cannot be satisfied, but this has nothing to do with the team semantics of x ⊥ y. One need 
not understand anything about x ⊥ y to conclude that the formula is unsatisfiable.

The definition of f lattening that was given in [31] was inductive and for dependence logic only. 
We present here an axiomatic definition that is appropriate in a wider context. We show that in most 
cases these axioms determine a unique inductive definition of a f lattening of a formula. 

1. (f latness axiom) ϕf is a f lat for mula. 
2. (entailment axiom) for all models M and all teams X over M such that dom(X ) ⊇ FV(ϕ),  the  

following must hold 

M �X ϕ �⇒ M �X ϕ
f. 

3. (distributivity axiom) The following holds: (�(ϕ1, .  .  .  , ϕn))
f = �(ϕf 

1, .  .  .  , ϕf 
n) for any logical 

operator � of arity n, and ( Qxϕ)f = Qxϕf for any quantif ier Q.

The motivation for these axioms is as follows: the f latness axiom is obviously necessary. The 
entailment axiom expresses the following idea: we do not want that the f lattening of ϕ says exactly 
the same as ϕ. But we want to know that the f lattening of ϕ is true at least if ϕ is so. So the f lattening 
is a weaker form of truth, which still reveals something (perhaps) relevant about the formula. Finally,
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8 The f lattening operator in team-based logics

the distributivity axiom ref lects the idea that we think of f lattening as a syntactic operation. This 
axiom says that applying distributivity yields a formula that satisfies the other axioms. 

Note that the received inductive definition of f lattening for dependence logic, as in [31], satisfies 
the above axioms. 

Now, what we would like to obtain is an explicit inductive definition of the f lattening of a given 
formula. From these requirements, we can infer the f lattening of the most well-known team-based 
atoms. It is easy to see that taking � for the f lattening of any non first-order atom is sufficient to 
satisfy all these requirements. But the interesting question is: is it necessary? The goal of this section 
is to answer this question. 

We get the following f lattening for the most well-known team-based atoms 

PROPOSITION 3.1. 
The following equivalences are implied by the above axioms: 

(i) for dependency atoms: (=(�x, y))f ≡ �, 
(ii) for anonymity atoms: (�x ϒ y)f ≡ �, 

(iii) for inclusion atoms: (�x ⊆ �y)f ≡ �, 
(iv) for independence atoms: (�x ⊥ �y)f ≡ �. 

PROOF. The proof of each claim is straightforward. 

(i) Suppose (=(�x, y))f 	≡ �. Then M �X (=(�x, y))f for some model M and team X .  But  
by the f latness axiom, (=(�x, y))f is f lat, and so it means that there is s0 ∈ X such that 
M �{s0} (=(�x, y))f. On the other hand, as a singleton team satisfies any dependence atom, 
then in particular M �{s0} =(�x, y), and so by the entailment axiom, M �{s0} (=( �x, y))f. 
Contradiction. 

(ii) Suppose that (�x ϒ y)f 	≡ �. Then M �X (�x ϒ y)f for some model M and team X .  But  by  the  
f latness axiom, (�x ϒ y)f is f lat, and so it means that there is s0 ∈ X such that M �{s0} (�x ϒ y)f. 
On the other hand, we construct from scratch a new team Y as follows. We write �a = s0(�x) and 
b = s0(y).  Let  b′ ∈ M \{b} (non-empty by assumption in this article). Let s′

0 be the assignment{�x �→ �a, y �→ b′}. Then consider the team Y = {
s0, s′

0

}
, i.e. Y is the following team 

s0 : 
s′

0 :

�x y
�a b
�a b′

By construction, M �Y �x ϒ y, so by the entailment axiom, we get M �Y (�x ϒ y)f.  Now  by  the  
f latness axiom, (�x ϒ y)f is f lat, and so for all s ∈ Y we get M �{s} (�x ϒ y)f, in particular for 
s0 ∈ Y we get M �{s0} (�x ϒ y)f . Contradiction.

(iii) Suppose (�x⊆�y)f 	≡ �. Then M �X (�x⊆�y)f for some model M and team X . But by the f latness 
axiom, (�x ⊆ �y)f is f lat, and so it means that there is s0 ∈ X such that M �{s0} (�x ⊆ �y)f.  On  
the other hand, we construct from scratch a new team Y as follows. We write �a = s0(�x) and
�b = s0(�y).  Let  s′

0 be the assignment {�x �→ �a, �y �→ �a}. Then consider the team Y = {
s0, s′

0 

}
, i.e. 

Y is the following team 

s0 : 
s′

0 :

�x �y
�a �b
�a �a 
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The f lattening operator in team-based logics 9

By construction, M �Y �x ⊆ �y, so by the entailment axiom, we get M �Y (�x ⊆ �y)f.  Now  by  the  
f latness axiom, (�x ⊆ �y)f is f lat, and so for all s ∈ Y we get M �{s} (�x ⊆ �y)f, in particular for 
s0 ∈ Y we get M �{s0} (�x ⊆ �y)f. Contradiction. 

(iv) Suppose (�x ⊥ �y)f 	≡ �. Then M �X (�x ⊥ �y)f for some model M and team X .  But  by  the  
f latness axiom, (�x ⊥ �y)f is f lat, and so it means that there is s0 ∈ X such that M �{s0} (�x ⊥ �y)f. 
On the other hand, as a singleton team satisfy any pure independence atom, then in particular 
M �{s0} �x ⊥ �y, and so by the entailment axiom, M �{s0} (�x ⊥ �y)f. Contradiction. �

REMARK 3.2. 
Curiously, we do not obtain a unique solution in the case of the exclusion atom. Indeed, for the 
exclusion atom (�x | �y)f, there are (at least) two choices satisfying the f lattening axioms: we can let 
(�x | �y)f be �, or can let (�x | �y)f be �x 	= �y. Both choices satisfy the f lattening axioms. 

In order to remain as symmetrical as possible, we make the choice in this article to take � as the 
f lattening of the e xclusion atom.

Note that in this Proposition 3.1, we found the f lattening only for atoms built of variables, not 
terms. In fact, this is not an issue as we can eliminate composite terms inside team-based atoms by 
existentially quantifying over new variables. Hence, we now have an explicit expression for all team-
based atoms built of terms. Also, it is immediate to infer that the f lattening of a first-order literal in 
actually itself. One can then infer the f lattening of any team-based formula using the distributivity 
axiom: substitute all team-based atoms by �, and keep all other (first-order) literals as they are. 

4 Flattening operator 

We move now to investigating the f lattening operator, which just boldly asserts that the formula 
following the operator has to be treated in a f lat way, whether the formula looks f lat or not. This 
operator was first introduced in [21] and was at that time denoted by ‘↓’. In this article, we will 
denote it by ‘F’. 

4.1 Definition 

First we give the syntax and the semantics of the f lattening operator F. 

DEFINITION 4.1 (Syntax of the f lattening operator). 
Let ϕ be a team-based σ -formula, then Fϕ is a team-based σ -formula. The f lattening operator does 
not bind variables, thus FV(Fϕ) = FV (ϕ).

It should be noted that the f lattening operator F may be applied to any kind of team-based 
formula. Let D = {d1, .  .  . , dn} be a set of team-based constructors (e.g. dependency, anonymity, 
independency, inclusion, exclusion, etc.). We will refer to the extension of FO(D) by the f lattening 
operator F by FO(D, F).

DEFINITION 4.2 (Semantics of the f lattening operator). 
Let ϕ be a team-based σ -formula, M a σ -model and X a team over M such that dom(X ) ⊇ FV(ϕ).
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10 The f lattening operator in team-based logics

We define the truth of the formula Fϕ in the model M and the team X as:

M �X Fϕ ⇐⇒ ∀s ∈ X ,M �{ s} ϕ

Therefore, one can rewrite the f latness definition as follows: let ϕ be a team-based formula, M a 
model and X a team over M such that dom (X ) ⊇ FV (ϕ) (also equal to FV

(
Fϕ

)
), then ϕ is f lat if 

and only if it holds that 

M �X ϕ ⇐⇒ M �X F ϕ. 

It is precisely because of this characterization of f lattenness that the f lattening operator was 
introduced, and that it bears the name that it does. One can easily show the following immediate 
proper ties about the f lattening operator.

PROPERTY 4.3. 
Let ϕ be any team-based formula. Then the following properties hold: 

(i) the formula Fϕ is always f lat. 
(ii) ϕ is f lat if and only if Fϕ ≡ ϕ. 

(iii) the operator F is idempotent, that is, FFϕ ≡ F ϕ.

PROOF. 

(i) Let M be a model, and let X be a team over M such that dom (X ) ⊇ FV
(
Fϕ

)
. According to 

Definition 4.1, we get that FV
(
Fϕ

) = FV (ϕ). Then 

M �X Fϕ 

⇐⇒ ∀s ∈ X ,M �{s} ϕ (semantics of F) 

⇐⇒ ∀s ∈ X ,
(∀s′ ∈ {s} ,M �{s′} ϕ

)
⇐⇒ ∀s ∈ X , M �{s} F ϕ

(ii) Let M be a model, and let X be a team over M such that dom (X ) ⊇ FV (ϕ). Suppose that ϕ is 
f lat, then M �X Fϕ iff for all s ∈ X , M �{s} ϕ iff M �X ϕ. Conversely, suppose that Fϕ ≡ ϕ, 
then M �X ϕ iff M �X Fϕ iff for all s ∈ X , M �{s} ϕ .

(iii) This is a direct consequence of the two previous items. �

PROPERTY 4.4. 
Let ϕ be a team-based formula, M a model and X a team over M such that dom (X ) ⊇ FV (ϕ).  If  ϕ 
is a f lat formula, then

M �X Fϕ �⇒ M �X ϕ
f .

PROOF. Suppose that ϕ is f lat, then M �X Fϕ implies by property (ii) that M �X ϕ, which implies 
by the entailment axiom that M �X ϕ

f . �

REMARK 4.5. 
Caution: the reciprocal of property 4.4 is false. Consider the ANON-sentence ϕ :=  ∀x∃y 
(x = y ∧ x ϒ y) and the model M with domain M = {a, b} consisting of only two elements a and b.
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The f lattening operator in team-based logics 11

Then ϕf ≡  ∀x∃y(x = y), and so M � ϕf.  But  M � ϕ, and as ϕ is a sentence, then Fϕ ≡ ϕ, and so 
M � Fϕ. Hence ϕf

� Fϕ. 
As a consequence, Fϕ needs not be logically equivalent to ϕf,  ev  en for ϕ that are already flat.

4.2 Basic properties of the f lattening operator 

We start by stating some simple facts about the application of the f lattening operator to the most 
well-known atoms of dependency. The proofs are straightforward and are thus omitted. 

PROPOSITION 4.6. 

(i) for first-order literals α: Fα ≡ α , 
(ii) for dependency atoms: F(=(�t1, t2)) ≡ �, 

(iii) for anonymity atoms: F(�t1 ϒ t2) ≡ ⊥  , 
(iv) for inclusion atoms: F(�t1 ⊆ �t2) ≡ �t1 = �t2 , 
(v) for exclusion atoms: F(�t1 | �t2) ≡ �t1 	= �t2 , 

(vi) for independency atoms: F(�t2 ⊥�t1 �t3) ≡ �. 

We now state simple properties about the distributivity of the f lattening operator with respect to 
the Boolean connectives. The proof of the next proposition is a routine application of the semantics. 

PROPOSITION 4.7. 
For any team-based formulas ϕ, ψ it holds that 

F(ϕ ∧ ψ)  ≡ Fϕ ∧ Fψ .

If, ϕ, ψ are both satisfied by the empty team, then additionall y

F(ϕ ∨ ψ)  ≡ Fϕ ∨ Fψ .

When the logic does not have the empty team property, this proposition does not hold. A counter-
example is provided by the formula (c 	= d ∧ x = c ∧ NE) ∨ (c 	= d ∧ x = d ∧ NE), where NE is 
satisfied by a team if and only if this team is non-empty.

We continue by studying the commutativity of the f lattening operator with the quantifiers. 

DEFINITION 4.8. 
A  formula  ϕ is called downwards f lat (DF) if 

M �X ϕ �⇒ ∀s ∈ X ,M �{s} ϕ 

for all models M and for all teams X over M such that dom(X ) ⊇ FV(ϕ). Similarly, ϕ is called 
upwards f lat (UF) if 

(∀s ∈ X ,M �{s} ϕ) �⇒ M �X ϕ 

for all models M and for all teams X over M such that dom(X ) ⊇ FV(ϕ).

We sum-up the relations between the different f latness notions we introduced so far in the 
Figure 1. 

One can easily remark that the property of downwards closure is strictly stronger assumption than 
downwards f latness. However, it will be a sufficient assumption for the following propositions.
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12 The f lattening operator in team-based logics

FIGURE 1. Relation between all f latness notions. 

PROPOSITION 4.9. 

(i) If ∃xϕ is downwards f lat, then F(∃xϕ) � ∃xFϕ . 
(ii) If ∃xϕ is upwards f lat, then ∃xFϕ � F(∃xϕ) . 

PROOF. We consider the proof of the first claim. Let M be a model, and let X be a team over M 
such that dom(X ) ⊇ FV(ϕ) . Then

M �X F(∃xϕ)

�⇒ ∀s ∈ X ,M �{s} ∃xϕ

�⇒ ∀s ∈ X , ∃H : {s} → P∗(M),M �{s}[H/x] ϕ (semantics of ∃)

�⇒ ∃H ′ : X → P∗(M), ∀s ∈ X ,M �{s}[H ′/x] ϕ

�⇒ ∃H ′ : X → P∗(M), ∀s ∈ X , ∀s′ ∈ {s} [
H ′/x

]
,M �{s′} ϕ (downwards f latness)

�⇒ ∃H ′ : X → P∗(M), ∀s ∈ X
[
H ′/x

]
,M �{s} ϕ

�⇒ ∃H ′ : X → P∗(M),M �X [H ′/x] Fϕ

�⇒ M �X ∃x(Fϕ) �
PROPOSITION 4.10. 

(i) if ∀xϕ is downwards f lat, then F(∀xϕ) � ∀x(Fϕ) , 
(ii) if ∀xϕ is upwards f lat, then ∀x(Fϕ) � F(∀xϕ) . 

PROOF. Again we consider the proof of the first claim only as the proof is similar in the second case. 
Let M be a model, and let X be a team over M such that dom(X ) ⊇ FV(ϕ) . Then

M �X F(∀xϕ)

�⇒ ∀s ∈ X ,M �{s} ∀xϕ

�⇒ ∀s ∈ X ,M �{s}[M/x] ϕ

�⇒ ∀s ∈ X , ∀s′ ∈ {s} [M/x] ,M �{s′} ϕ (downwards f latness)

�⇒ ∀s ∈ X [M/x] ,M �{s} ϕ

�⇒ M �X [M/x] Fϕ

�⇒ M �X ∀x(Fϕ)
�
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The f lattening operator in team-based logics 13

4.3 Preservation of closure properties 

The proof of the next lemma is a routine application of the semantics. 

LEMMA 4.11. 
Fϕ is always downwards closed and union closed.

COROLLARY 4.12. 
Let L be a team-based logic extending FO by some dependencies and some operators from among 
{∧, ∨, ∃, ∀}. 

(i) If L is downwards closed (resp. union closed, resp. downwards f lat, resp. upwards f lat), then 
so is L(F) . 

(ii) If L is f lat, then L ≡ L(F). 

5 The expressive power of the f lattening operator 

We ask now, does the f lattening operator, when added to a logic, increase the expressive power of 
the logic? Following [14], the f lattening operator F is said to be safe for a team-based logic L if 
L ≡ L(F). The idea is that the operator F can be ‘safely’ added to the logic, as it does not increase 
its expressive power. In this section we systematically study the effect of F to the expressive power 
of various team-based logics.

5.1 Adding F to inclusion and anonymity lo gic

The goal of this subsection is to show that inclusion logic together with the f lattening operator 
FO

(⊆, F
)

is equivalent to the positive fragment of greatest fixed-point logic GFP+.  From  this  it  
follows that FO

(⊆, F
)

has exactly the same expressive power as FO(⊆) by the results of [15]. 
Recall that the semantics we take for GFP+ is the standard Tarskian semantics. Therefore the 

semantics of GFP+ is defined in terms of individual assignments rather than teams, and so the 
equivalences between GFP+ and FO(⊆) and between GFP+ and FO

(⊆, F
)

(both on the level of 
formulas) must be formulated in an indirect way, as it was done in [15] and as it will be done in 
Theorem 5.1. In the following, we use 〈M, R := X (�x)〉 to denote the expansion of M by the relation 
symbol R, interpreted as X (�x ).

THEOREM 5.1. 
For every FO

(⊆, F
)
-formula ϕ(�x) with free variables in �x = (x1, .  .  . , xn) there is a GFP+-formula 

ϕ∗ ≡ ϕ∗(R, �x) such that ar(R) = n, R occurs only positively in ϕ∗, and the condition 

M �X ϕ(�x) iff 〈M, R := X (�x)〉 �s ϕ
∗(R, �x) for all s ∈ X 

holds for all models M and all teams X over M with dom (X ) ⊇ {x1, . . . , xn}.

PROOF. The proof is by structural induction on ϕ. The cases for first-order literals, inclusion 
atoms, connectives, and quantifiers are treated as in [15, Theorem 15]. We show the inductive case 
corresponding to F. 

If ϕ(�x) is of the form F ψ(�x), then we define 

ϕ∗(R, �x) = ∀�y(¬R �y ∨ θ(�x, �y))
where θ(�x, �y) = ψ∗(S, �x) [

(�y = �t)/S(�t)], that is, θ is the formula ψ∗(S, �x) in which we replaced 
each atom of the form S(�t) by the atom �y = �t.  Let  M be a model and X be a team over M with
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14 The f lattening operator in team-based logics

dom(X ) ⊇ {x1, .  .  . , xn}. One can remark that 

M �X F ψ(�x) ⇐⇒ ∀s ∈ X . M �{s} ψ(�x) 
⇐⇒ ∀s ∈ X .∀s′ ∈ {s} . 〈M, S := {s} (�x)〉 �s′ ψ∗(S, �x) (by IH on ψ(�x)) 
⇐⇒ ∀s ∈ X . 〈M, S := {s} (�x)〉 �s ψ

∗(S, �x) 
⇐⇒ ∀s ∈ X . 〈M, S := {s(�x)}〉 �s ψ

∗(S, �x) 
⇐⇒ ∀s ∈ X . M �s ψ

∗(S, �x) [
(s(�x) = �t)/S(�t)] (5.1)

The last equivalence is justified by the following observation: as S is assigned to a relation 
with a unique element s(�x), having an atom of the form S(�t) in ψ∗ is equivalent to have the atom 
s(�x) = �t instead (we do the test ‘by hand’), so we perform this substitution in ψ∗ while preserving 
equivalence. 

Now, suppose M �X F ψ(�x), then condition 5.1 holds. We want to show

〈M, R := X (�x)〉 �s ∀�y(R �y → ψ∗(S, �x) [
(�y = �t)/S(�t)]) for all s ∈ X 

To do so, let �b ∈ M such that �b ∈ X (�x). Then there is an assignment s ∈ X such that �b = s(�x),  we  
fix such an assignment. And by condition 5.1 we obtain 

M �s ψ
∗(S, �x)

[
(�b = �t)/S(�t)

]
Conversely, suppose that

〈M, R := X (�x)〉 �s ∀�y(R �y → ψ∗(S, �x) [
(�y = �t)/S(�t)]) for all s ∈ X 

So by taking �y := s(x),  as  s(�x) ∈ {
s(x)

∣∣ s ∈ X
} def= X (�x), then the condition ‘R �y’ is satisfied, so we 

get 

M �s ψ
∗(S, �x) [

(s(�x) = �t)/S(�t)] for all s ∈ X 

and the result follows from condition 5.1. �

COROLLARY 5.2. 

(i) The logics FO
(⊆, F

)
and FO(⊆) are equivalent for s entences. 

(ii) The logics FO
(
ϒ, F

)
and FO(ϒ) are equivalent for s entences. 

PROOF. The first claim follows by Theorem 5.1. 
The second claim follows from the fact that inclusion atoms can be expressed using anonymity 

atoms and vice versa [13]. �

5.2 Adding F to unary inclusion lo gic

Galliani [14] proved that constancy atoms increase the expressive power of unary inclusion logic. 
More precisely, he proved that non-connectedness of graphs can be expressed using constancy atoms 
and unary inclusion atoms, but not in terms of unary inclusion atoms alone. The next proposition 
shows that the same effect can be obtained using F and inclusion atoms.

NOTATION 5.3. 
Let φ is a first-order formula, and let ψ be a team-based formula. We will then denote ϕ ↪→ ψ as 
an abbreviation for ¬ϕ ∨ (ϕ ∧ ψ).
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The f lattening operator in team-based logics 15

We thank Pietro Galliani for suggesting the following proposition. 

PROPOSITION 5.4. 
The following FO

(⊆1, F
)

sentence 

∃y(F(∃x(x 	= y ∧ ∀z(E(x, z) ↪→ z ⊆ x )))) (5.2) 

is true in a graph G = 〈V , E〉 if and only if the graph G is disconnected.

PROOF. It is straightforward to check that the formula above is logically equivalent with the formula 
used in [14] to show the same result. The point is that ‘∃y(F .  .  .  )’ essentially quantifies over singleton 
subteams. The formula then asks with ∃x whether there is a subset of vertices different from y, which 
is closed under the edge-relation E. More exactly, suppose a graph (V , E) satisfies the sentence (5.2). 
Let W 	=  ∅  interpret the quantifier ‘∃y’ of (5.2). Let a ∈ W . Now the singleton team {a} satisfies 
the subformula of (5.2) starting with ‘∃x’. Let U 	=  ∅  interpret this ‘∃x’. Then a /∈ U and U is 
closed under the edge-relation E. Hence (V , E) is disconnected. Conversely, suppose W and U are 
non-empty disjoint connected components of a graph (V , E).  We  use  W to interpret the quantifier
‘∃y’ of (5.2). Suppose a ∈ W is given. We can let U interpret the quantifier ‘∃x’  i  n (5.2). This shows 
that (5.2) is true in the graph. �

COROLLARY 5.5. 
The f lattening operator F increases the expressive power of FO(⊆1) .

It remains open whether F increases the expressive power of higher arity inclusion logic. It should 
be noted, however, that if we do not focus on the arities of the inclusion atoms, we have Corollar y 5.2. 

5.3 Adding F to unary anonymity lo gic

5.3.1 Expressivity of unary anonymity atoms and the f lattening operator For any n ∈ N, we denote 
by An a graph consisting of two cycles each of length 2n+1 and Bn a graph consisting of a single 
cycle of length 2n+2 .

PROPOSITION 5.6. 
The following FO(ϒ1, F) sentence 

∃xF(∃y(y 	= x ∧ ∀z(E(y, z) ↪→ (z 	= x ∧ y ϒ z ∧ z ϒ y ))))

is true in the models An and is false in Bn .

PROOF. The intuition behind this FO
(
ϒ1, F

)
-sentence is as follows: consider a cycle of even length. 

We would like to fill it completely with variable assignments, in order to be able to detect if there 
exists another node in the graph that is not part of the considered cycle. To do so, we are going to use 
the mechanism of the anonymity atom to fill this cycle. More precisely, we will partition the cycle 
into two sets of nodes, that will be assigned to y and z respectively, in such a way that there will be 
an alternation between the values taken by y and z along the cycle. This is illustrated in the Figure 2. 

This filling process is done via the sub-formula E(y, z) ↪→ (y ϒ z ∧ z ϒ y). Here, the black node 
y0 in the Figure 2 corresponds to a starting value for the variable y. Then E(y, z) ↪→ y ϒ z forces 
the variable z to take two different values z1 and z′

1 that are in fact the two adjacent vertices of y0. 
Then E(y, z) ↪→ z ϒ y firstly forces the variable y to take two different values y2 and y0 that are in 
fact the two adjacent vertices of z1, and secondly forces the variable y to take two different values y′

2 
and y0 that are in fact the two adjacent vertices of z′

1. And so on. At the end, as the considered cycle

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/6/exaf045/8244578 by guest on 09 N
ovem

ber 2025



16 The f lattening operator in team-based logics

FIGURE 2. Illustration of the anonymity atom mechanism to fill a cycle. 

is of even length, then the last two values assigned to the variable z actually coincide. Such filled 
components then satisfy the clause ∀z(E(y, z) ↪→ y ϒ z ∧ z ϒ y). 

The whole objective will be to succeed in distinguishing the graphs An from the graphs Bn.  In  
fact, the graphs An and Bn are all composed of one or two cycles of even length. 

At the end of the filling process, we obtained a cycle filled with an alternation of values for the 
variables z and y. In order to distinguish An from Bn, we need to find an x such that it does not 
belong to the alternation of y and z. Hence, we need to check both that y 	= x and z 	= x, which gives 

y 	= x ∧ ∀z(E(y, z) ↪→ (z 	= x ∧ y ϒ z ∧ z ϒ y ))

The end of the construction of the desired formula is identical to the one we made for the unary 
inclusion logic together with the f lattening operator F, and at the end we finally get 

∃xF(∃y(y 	= x ∧ ∀z(E(y, z) ↪→ (z 	= x ∧ y ϒ z ∧ z ϒ y ))))

By construction, it is clear that this formula is true for the graphs An but is false for the graphs
Bn. �

5.3.2 Unary anonymity logic does not express non-connectedness The next technical lemma will 
be used to show that the structures An and Bn from the previous section cannot be separated by 
formulas of unary anonymity logic. 

Let M be a model, let X be a team over M, and let F ⊆ Aut (M). Then we define the team closure 
of X under F, written ClF (X ), as the set of all assignments obtained by applying all automorphisms 
from F to all assignments of X , that is 

ClF (X ) def= {
f (s)

∣∣ s ∈ X , f ∈ F
}

For F = Aut (M), we simply write Cl (X ) instead of ClAut(M) ( X ), that is

Cl (X ) def= {
f (s)

∣∣ s ∈ X , f ∈ Aut (M )
}

Recall that a magma is a set M equipped with a binary operation � that sends any two elements 
from M to another element in M , and in this case we call � an internal binary operation. We call a 
unitary magma any magma whose internal binary operation admits a neutral element (which is then 
unique), that is, if there is e ∈ M such that for all m ∈ M we get e � m = m � e = m.
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The f lattening operator in team-based logics 17

LEMMA 5.7. 
Let M be a model. Let F ⊆ Aut(M) be a unitary magma such that for any two points m1, m2 ∈ M 
there exists an automorphism f ∈ F such that f (m1) = m1 and f (m2) 	= m2. Then for all teams X 
over M such that ClF(X ) = X and all formulas ϕ ∈ FO(ϒ1) with free variables in dom(X ) we have
that

M �X ϕ iff M �X ϕ f

PROOF. It suffices to show the right to left direction that is proved via structural induction. The proof 
for the connectives and quantifiers are similar to that of Lemma 21 in [14]. 

Assume ϕ = x1 ϒ x2.  As  (x1 ϒ x2)
f = � we need to prove that M �X x1 ϒ x2 only from the 

hypothesis of the lemma, that is, whenever X is a team whose domain contains the variables x1 and 
x2 and such that X = ClF(X ). But this is the case. Indeed, suppose that s(x1) = m1 and s(x2) = m2. 
Then by assumption of the lemma, there is an automorphism f ∈ F such that f (m1) = m1 and 
f (m2) 	= m2, and since X = ClF(X ) there exists some assignment s′ ∈ X such that s′ = f (s), that 
is, s′(x) = f (s(x)) for all x ∈ dom(s). This implies in particular that{

s′(x1) = f (s(x1)) = f (m1) = m1 = s(x1) 
s′(x2) = f (s(x2)) = f (m2) 	= m2 = s(x 2)

and thus, for any assignment s ∈ X there exists some assignment s′ ∈ X such that s′(x1) = s(x1) but 
s′(x2) 	= s(x2). This shows that M �X x1 ϒ x2, as required. �

COROLLARY 5.8. 
The f lattening operator increases the expressive power of unary anonymity logic. 

PROOF. By Proposition 5.6, the formula Θ separates the models An and Bn. Assume for a 
contradiction that Θ is equivalent to some ϕ of unary anonymity logic. By Lemma 5.7, ϕ is 
equivalent to ϕf in the models An and Bn, that is 

An � ϕf ⇐⇒ Bn � ϕ f, 

where ϕf is a first-order formula. But by an Ehrenfeucht–Fraïssé game argument, this is impossible. 
Namely, if the first order ϕf has quantifier rank n, then player II has a winning strategy in the 
Ehrenfeucht–Fraïssé game of length n between An and Bn, whence the models cannot be separated 
by ϕf. The strategy is essentiall y described in [17, p. 181]. �

5.4 Adding F to dependence, exclusion and independence lo gic

In this section we show that FO(=(·, ·), F) has exactly the same expressive power as FO(=(·, ·)).  We  
will use the same strategy as in subsection 5.1. More precisely, we will show that FO(=(·, ·), F) �
ESO, and as it is well known that ESO ≡ FO(=(·, ·)), we will obtain the result. The same idea 
works also for exclusion and independence logic.

Exactly as for inclusion logic and GFP+ (Theorem 5.1), we have to adapt the equivalence between 
FO(=(·, ·), F) and ESO because they do not use the same semantics.

Recall that a sentence φ(R) from second-order logic is called downwards closed if (M, A) � φ(R) 
and A′ ⊆ A imply (M, A′) |� φ(  R).

LEMMA 5.9. 
For every FO(=(·, ·), F)-formula ϕ(�x) with the free variables in �x = x1, .  .  . , xn, there is an ESO-
formula ϕ∗ ≡ ϕ∗(R) that is downwards closed and such that ar(R) = n, and that satisfies the
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18 The f lattening operator in team-based logics

following condition: 

M �X ϕ(�x) iff 〈M, R := X (�x)〉 � ϕ∗(R) ∨ ∀�x¬R(�x ) (5.3) 

holds for all models M and all teams X over M with dom(X ) ⊇ {�x}.

PROOF. We consider the inductive case corresponding to ϕ = Fψ as the other cases can be dealt 
with analogously to [31, Theorem 6.2]. It turns out that the formula ϕ∗ that we need to take is exactly 
the same as for the translation from FO(⊆, F) to GFP+, which is clearly in ESO assuming ψ ∗ is.�

COROLLARY 5.10. 
The operator F does not increase the expressive power of dependence and exclusion lo gic.

PROOF. This follows by Lemma 5.9 as any downwards closed ESO-formula ϕ(R) can be translated 
into a dependence logic formula satisfying (5.3), see [24, 25]. The claim for exclusion logic follows 
from the fact that exclusion atoms can be expressed using dependence atoms and vice versa [13]. �

COROLLARY 5.11. 
The operator F does not increase the expressive power of independence lo gic.

PROOF. The proof is analogous to the case of dependence logic using the analogue of Lemma 5.9 
(without the assumption of downward closure) ans its converse shown in [13]. �

It remains an open question, as pointed out by the referee, whether there is any (non-trivial) 
downward closed logic whose expressive power increases when F is added.

5.5 Adding F to fragments of dependence lo gic

We begin by showing that the f lattening operator reduces to the f lattening of a formula for existential 
dependence logic formulas. 

PROPOSITION 5.12. 
If ϕ ∈ FO(=(·, ·)) is existential then Fϕ ≡ ϕf.

PROOF. Recall that M �X Fϕ iff M �{s} ϕ, for all s ∈ X . Now it is easy to show using induction on ϕ 
using downwards closure (and singleton-valued supplements functions) that M �{s} ϕ iff M �{s} ϕf 

for any singleton team {s}, from w hich the claim follows. �
Next we turn to the so-called constancy logic the formulas of which has the following normal form. 

PROPOSITION 5.13 ([13]). 
Let ϕ(�x) ∈ FO(=(·)). Then ϕ is logically equivalent to a constancy logic formula of the form 

∃�y
(∧

i 

=(yi) ∧ α(�x, �y) 
)

for some first-order for mula α.

PROPOSITION 5.14. 
The operator F does not increase the expressive power of constancy logic, that is FO(=(·), F) ≡ 
FO(=( ·)).
PROOF. We prove the claim using induction on ϕ ∈ FO(=(·), F). We consider only the case where 
ϕ = Fψ . By the induction hypothesis and the previous lemma, we get that ψ is equivalent with some
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The f lattening operator in team-based logics 19

formula in the normal form: 

∃�y
(∧

i 

=(yi) ∧ α(�x, �y )

)

for some first-order formula α. It now follows from Proposition 5.12 that ϕ ≡ ∃�yα. �

5.6 Adding F to FO with the Boolean ne gation

In this section we consider the effects of adding F to FO(∼) (also denoted by FON in the following).

DEFINITION 5.15. 
Let ϕ be a σ -formula, M a σ -model and X a team over M such that dom(X ) ⊇ FV(ϕ). We define 
the truth of the formula ∼ϕ (the Boolean negation of ϕ) in the model M and the team X as:

M �X ∼ϕ ⇐⇒ M �X ϕ

We will use the following notation from [26]: 

• Eϕ def=  ∼¬ϕ, meaning that at least one assignment in the considered team satisfies the first 
order formula ϕ.  Here ¬ϕ refers to the dual of ϕ i.e. the formula obtained from, what is usually 
written as ¬ϕ, by pushing negation all the wa y to the atomic formulas; 

• ϕ � ψ def=  ∼(∼ϕ ∧ ∼ψ), so that M �X ϕ � ψ iff M �X ϕ or M �X ψ , which corresponds to 
the Boolean disjunction (a.k.a. intuitionistic disjunction).

We will utilize the following normal form theorem. 

PROPOSITION 5.16 ([26]). 
Let ϕ(�x) ∈ FO(∼). Then ϕ is logically equivalent to a formula of the form

�
i∈I 

⎛ 

⎝αi ∧
∧
j∈Ji 

Eβi,j 

⎞ 

⎠ 

for some finite sets I and Ji and for first-order formulas αi and βi,j for all i ∈ I and j ∈ Ji.

PROPOSITION 5.17. 
FO(∼, F) ≡ FO(∼ ).

PROOF. To prove the non-trivial direction (⇒), we need to show that for all ϕ(�x) ∈ FO(∼, F), there 
is ϕ∗(�x) ∈ FO(∼) such that for all models M and for all teams X over M such that dom(X ) ⊇ {�x}, 
the following holds 

M �X ϕ(�x) ⇐⇒ M �X ϕ
∗(�x) 

We prove it by structural induction on ϕ. The only interesting case is when ϕ(�x) = F ψ(�x).
According to Proposition 5.16, we obtain 

ψ(�x) ≡�
i∈I 

⎛ 

⎝αi ∧
∧
j∈Ji 

Eβi,j 

⎞ 

⎠
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20 The f lattening operator in team-based logics

FIGURE 3. Expressive power of logics on the level of formulas. 

for some finite sets I and Ji and for first-order formulas αi and βi,j for all i ∈ I and j ∈ Ji.  It  is  now  
a routine application of the semantics to show that ϕ is equivalent with the first-order formula

∨
i∈I 

⎛ 

⎝αi ∧
∧
j∈Ji 

βi,j 

⎞ 

⎠ ,

using the facts that in singleton teams Eβ is equivalent to β and that(
for all s ∈ X : M �{s} �

i 

ϕi

)
iff M |�X

∨
i 

ϕ i, 

for f irst-order formulas ϕi. �

6 Summing up expressive powers 

We sum up all the previous results in the following Figure 3. It shows when a fragment is comparable 
to another in terms of expressive power, and when it is the case, it indicates which fragment is more 
expressive than another. The red edges are the comparisons that are not known at the moment, but 
which we believe to be true. These questions have some echoes in finite model theory where beyond 
the seminal and old results about the monadic case (i.e. arity 1) of existential second order logic, 
very few separation results are known [2, 3, 12]. Considering the tight connections between arity 
based fragments of existential second order logic and of some team logics [9], such a situation is all 
but surprising.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/35/6/exaf045/8244578 by guest on 09 N
ovem

ber 2025



The f lattening operator in team-based logics 21

7 Conclusion 

We have explored the f lattening operator F within the framework of team semantics, a powerful 
extension of classical first-order logic that allows for a more powerful treatment of dependencies 
and independencies in logical formulas. The f lattening operator was originally introduced by Wilfrid 
Hodges in 1997 [21], but its potential and implications have remained largely unexplored until now. 

Through our investigation, we demonstrated that the introduction of the f lattening operator F 
does not add expressive power to logics such as dependence logic, inclusion logic, constancy logic, 
inconstancy logic and FO(∼). It turns out that this is not the case with the fixed arity fragments 
of these logics. For example, we have seen that unary inclusion logic with the f lattening operator 
FO

(⊆1, F
)

is strictly more expressive than unary inclusion logic FO(⊆1). We conjecture that the 
same is true of all the other fragments of fixed arity, too.

The work presented here opens several avenues for future research. One possible direction is the 
further exploration of the computational complexity associated with the translation of some logic 
fragments augmented with the f lattening operator into SAT problems, along the lines of [11]. 
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