
The flattening operator in team-based logics
Arnaud Durand1,*, Juha Kontinen2,†, Werner Mérian1,‡, and Jouko Väänänen2,3,§

1Université Paris Cité, CNRS, IMJ-PRG, Paris, France
2Department of Mathematics and Statistics, University of Helsinki, Finland

3Institute for Logic, Language and Computation, University of Amsterdam, The
Netherlands

*durand@imj-prg.fr, †juha.kontinen@helsinki.fi, ‡merian@imj-prg.fr,
§jouko.vaananen@helsinki.fi

May 19, 2025

Abstract
We propose a systematic study of the so-called flattening operator in team semantics.

This operator was first introduced by Hodges in 1997, and has not been studied in more
detail since. We begin a systematic study of the expressive power this operator adds to the
most well-known team-based logics, such as dependence logic, anonymity logic, inclusion logic
and exclusion logic.

1 Introduction
Team semantics is a mathematical framework for studying concepts and phenomena that arise
in the presence of plurality of data. Examples of such concepts are, for example, functional
dependence in database theory and conditional independence of random variables in statistics.
The beginning of the area can be traced back to the introduction of dependence logic in [Vää07].
In dependence logic, formulas are interpreted by sets of assignments (called teams) and it extends
the syntax of first-order logic by dependence atoms =(x, y) expressing that the values of the
variables x functionally determine the values of y in a team.

Since the introduction of dependence logic, the expressivity and complexity aspects of logics
in team semantics have been extensively studied (see, e.g., [Dur+22]) and interesting connections
have been found to areas such as database theory [KLV13; HKV20], Bayesian networks [Cor+19],
quantum foundations [APV21], and inquisitive and separation logic [CIY20; HGW22]. These
works have focused on logics in the first-order, propositional and modal team semantics, and
more recently also in the multi-set and probabilistic settings [APV21; Dur+18a; Dur+18b].

A defining feature of team semantics is that satisfaction of a formula is defined with reference
to a set of assignments, not just a single assignment, as is the case in classical first-order logic. In
this respect, logics with team semantics resemble modal logic, where a Kripke structure offers a
spectrum of possible assignments. In a Kripke structure, there is the so-called accessibility relation
which brings in the aspect that assignments, for example, develop in time. This makes it possible
to talk in modal logic about necessity and possibility. Team semantics is more rigid. There is just
the set (called team) of assignments without any built-in relations between its elements. However,

1

mailto:durand@imj-prg.fr
mailto:juha.kontinen@helsinki.fi
mailto:merian@imj-prg.fr
mailto:jouko.vaananen@helsinki.fi

1 Introduction 2

this makes it possible to express interesting and highly non-trivial “combinatorial” properties
of variables, such as the aforementioned functional dependence but also inclusion and exclusion
atoms [Gal12] and independence atoms [GV13].

We can think of the sub-team relation as an accessibility relation, and then “necessity” and
“possibility” make perfect sense. Then “necessarily φ” means “φ is true in every sub-team”, and
“possibly φ” means “φ is true in some non-empty sub-team”.

Some formulas do not seem to take advantage of the existence of a team around an assignment.
One way to make this phenomenon exact is the following: a formula φ is called flat, or is said to
satisfy the flatness criterion, if for all model M and for all team X the following holds

M �X φ ⇐⇒ ∀s ∈ X : M �{s} φ . (1.1)

This criterion holds for first-order formulas φ, i.e. all first-order formulas are flat. This offers a
method to show that some given formula is not logically equivalent to a first-order formula. One
just shows that the formula is not flat. To take two simple examples, =(x) and =(x, y) are not
flat, hence they cannot be logically equivalent to a first-order formula, which is intuitively obvious
but still needs an argument. Flatness provides such an argument. In general, the problem of
deciding whether a given dependence logic formula is equivalent to a first-order formula is highly
undecidable. Therefore, the question of first-order expressibility is non-trivial and any method,
even a partial one, is useful.

One can say that flat formulas are, in a sense, “local”, in that their truth is determined by
what holds for single assignments. Still, non-trivial properties of teams can be expressed. For
example, x = y is flat and it says that the variables x and y have the same value in the team. It
is a trivial property of a team but still such teams are clearly distinguished from totally arbitrary
teams. Flatness just means that the distinguishing property is “flatly spread out” in the team.

One might think that flatness of a formula is reflected in the formula being built from flat
elements. But all sentences are flat because their truth in any non-empty team is determined by
their truth in {∅}, i.e. the team containing only the empty assignment. A sentence expresses
something about the model that the team is based on. A sentence says nothing about any team.
The flatness of sentences is, therefore, like an anomaly. But it follows that being flat is not
equivalent to being, up to logical equivalence, first-order. A flat formula may very well have
non-flat sub-formulas.

Example. We consider a signature with a 2-ary relation R(·, ·). Consider the following formula
φ(x)

∃u(R(x, u) ∧ ∀v(R(x, v) → ∃w(R(x,w) ∧ =(w, v) ∧ w 6= u))) .
This is satisfied by a team X if for every assignment of the variable x in the team X, the set
R(x, ·) is infinite. It is a flat formula, but its sub-formula =(w, v) is not flat. Thus, condition
(1.1) only says that φ itself behaves in a first order way by being flat, but its sub-formulas need
not do so.

The class of teams satisfying a flat formula is closed downwards and closed under unions
and intersections. There is a maximal team, and the class of teams satisfying a flat formula is
precisely the power-set of that team. The maximal team of a flat formula φ is given by{

s
∣∣M �{s} φ

}
.

Thus the dimension (in the sense of [HLV24]) of a flat formula is always 1.
We can make an arbitrary formula flat by using the following new logical operator, first

introduced by Hodges in 1997 [Hod97], called the flattening operator and denoted here by F:

M �X Fφ ⇐⇒ ∀s ∈ X : M �{s} φ . (1.2)

1 Introduction 3

Thus, Fφ is always flat, and for a flat formula φ, we have φ ≡ Fφ. The flattening operator is
somewhat similar to the necessity operator �φ and the possibility operator ♦φ from Modal Logic.
The “mode” of φ that Fφ brings about is not that φ is “necessary” or “possible”, but that on the
question whether the entire team satisfies φ or not, at least we know that φ is true in singleton
sub-teams. We can perhaps anticipate that Fφ is computationally much simpler to check for
satisfaction than φ itself, since we have to check only single assignments. However, if φ is a
sentence, then Fφ ≡ φ. So Fφ may be computationally as complicated as φ itself.

The flattening operator F makes an arbitrary formula flat. This happens with no regard to
what the formula looks like inside. There is another way to make a formula flat. This is based on
changing the formula inside as follows: The flattening φf of a formula φ is obtained inductively
by replacing non-first-order atomic formulas by something that is flat. If there are non-first-order
logical operations, then they are similarly replaced by something flat. We can impose axioms for
the flattening, because it is a priori not clear what it is. There may be different ways to flatten a
formula, but we expect them all to satisfy some basic axioms. This will be discussed in section 3.

Although Fφ is always flat, it is not always equivalent to φf . We can use the flattening of a
formula to define a kind of negation of a formula: we take the flattening φf , which is first-order,
and then apply negation to the flattening.

A weaker version of flatness is the following: a formula is downwards flat if

M �X φ =⇒ ∀s ∈ X : M �{s} φ . (1.3)

Thus, the truth of φ in a team is inherited by the singleton sub-teams. Of course, downwards
closed formulas are downwards flat, but not necessarily flat. An example is =(x). Every singleton
team satisfies =(x) but not every team satisfies =(x).

A similar weaker version of flatness is the following: a formula is upwards flat if

(∀s ∈ X : M �{s} φ) =⇒ M �X φ . (1.4)

So for the truth of φ in a team, it is enough that φ “gathers” truth from little singleton pieces
inside the team.

Still another variation of flatness is n-coherence (introduced in [Kon13], see also [MO22] and
[CG22]):

M �X φ ⇐⇒ (∀Y ⊆ X such that |Y | = n, M �Y φ) . (1.5)
Usually, flatness corresponds in this terminology to 1-coherence. For example, dependence atoms
are not flat but they are 2-coherent. In [Kon13], it is shown that n-coherence is preserved by
conjunction but not by disjunction, except if one of the disjuncts is 1-coherent. The disjunction
of two dependence atoms need not be n-coherent for any n. The model-checking problem for n-
coherent formulas is in LOGSPACE. Model-checking of the disjunction of two 2-coherent formulas
is in NLOGSPACE. In [Kon13], it is asked whether there is a dependence logic formula which is
not k-coherent for any k but which is “

√
n-coherent”?

Coherence, just like flatness, can be approached from the point of view of an operator as
well. The n-coherence operator applied to a formula says of a team that every sub-team of size n
satisfies the formula. The co-n-coherence operator applied to a formula says of a team of size m
that every sub-team of size m− n satisfies the formula. The co-n-coherence operator is a way to
say that a formula is approximately satisfied by the team. In [Vää17] the approximation is more
generous (proportional). We can even let an operator say that the team satisfies the formula even
if any n assignments satisfying a given fixed first order formula are added to the team or taken
away from the team. So, the team satisfies the formula even if it is made a little smaller or a
little bigger. It is a kind of “give or take at most n” operator. Dependence logic is closed under
all these operators. We will not pursue this line of argument further in this paper.

2 Preliminaries 4

Our contributions We study the effects of extending several team-based logics by the flattening
operator of Hodges. We also take a new look at the concept of a flattening of a formula that
has been utilized in several works in the area. In section 2 we recall the basic concepts and
definitions relevant for this work. In section 3 we show that the flattening of a formula can be
characterized axiomatically but also give explicit inductive definitions of it for the most prominent
team-based logics. In section 4 we introduce the flattening operator and study its interactions
with the aforementioned logics. In section 5 we show that the flattening operator increases the
expressive power of the unary fragments of inclusion and anonymity logics. These results show
that the two different ways of defining a flattening of a formula are not in general equivalent.

2 Preliminaries
In this section, we will briefly recall the notation used in this work, the definition of team
semantics, and some basic results that will be used in the rest of this work. Through all of this
work, we assume that we have countable sets of individual variable symbols xi, yi, zi, etc. for
i ∈ N, and of relation variable symbols Xi, Yi, Zi, etc. for i ∈ N of all arities. We will use
Fraktur font to represent models, such as A, B, M, etc. and use Roman font to represent their
corresponding domain A, B, M , etc. We will write ~x, ~y, ~z and so on to describe tuples of variable
symbols; and likewise, we will write ~a, ~b, ~m and so forth to describe tuples of elements of a model.
Given any set A, we will furthermore write P(A) for the powerset {B | B ⊆ A} of A, and P∗(A)
for P(A) \ {∅}.

2.1 Team semantics
If s is an assignment, we write s [m/v] for the assignment in which we substituted the variable v
by the value m. We recall from [Vää07] the following concepts: a team X is any set of assignments
for a fixed set of variables, denoted dom(X). Suppose now X is a team. It is sometimes useful
to think of X as a relation in the following sense: suppose x1, . . . , xn ∈ dom(X). We obtain
from X the n-ary relation {〈s(x1), . . . , s(xn)〉 | s ∈ X}. If m is an element the domain M of our
model M, then X[m/v] is the team consisting of all s[m/v], where s ∈ X. We use X[M/v], called
the duplication of X at v, to denote the set of all s[m/v], where m ∈ M and s ∈ X. Finally, if
H : X → P∗(M), then X[H/v], called the supplementation of X at v by H, is the team consisting
of all s[m/v], where s ∈ X and m ∈ H(s).

For our purposes, it will be useful to first present team semantics for first-order logic proper,
and then progressively add new atoms (dependency, non-dependency, inclusion, exclusion, etc.).

We recall the usual definition of team semantics (in its lax formulation). For the sake of
simplicity, it is assumed that all expressions are in negation normal form, meaning that negations
¬ only appear in front of first-order literals.

Definition 2.1 (Team semantics for first-order logic). Let σ be a first-order signature. Let
M be a first-order σ-model, let ϕ be a first-order σ-formula, and let X be a team over M such
that dom (X) ⊇ FV (ϕ). Then we define the relation M �X ϕ by induction over the structure of
the formula ϕ as follows:

TS-lit: If ϕ ≡ α where α is a first-order σ-literal, then M �X ϕ if and only if for all assignments
s ∈ X it holds that M �s α (here according to Tarskian semantics).

TS-∨: If ϕ ≡ ψ1 ∨ ψ2 where ψ1 and ψ2 are first-order σ-formulas, then M �X ϕ if and only if
there exist some teams Y and Z (not necessarily disjoint) such that X = Y ∪ Z, M �Y ψ1
and M �Z ψ2.

2 Preliminaries 5

TS-∧: If ϕ ≡ ψ1 ∧ ψ2 where ψ1 and ψ2 are first-order σ-formulas, then M �X ϕ if and only if
M �X ψ1 and M �X ψ2.

TS-∃: If ϕ ≡ ∃vψ where v is a variable symbol and ψ is a first-order σ-formula, then M �X ϕ if
and only if there exists some H : X → P∗ (M) such that M �X[H/v] ψ.

TS-∀: If ϕ ≡ ∀vψ where v is a variable symbol and ψ is a first-order σ-formula, then M �X ϕ if
and only if M �X[M/v] ψ.

If it is the case that M �X ϕ, then we say that the model M together with the team X satisfy
ϕ, and if it is not the case, then we say that the model M together with the team X do not
satisfy ϕ and we write it M 2X ϕ. If ϕ is a sentence (i.e. has no free-variables), we say that ϕ is
true in M according to team semantics, and we write it M � ϕ, if M �{∅} ϕ where {∅} is the
team containing only the empty assignment. Otherwise, we say that ϕ is false in M according to
team semantics, and we write it M 2 ϕ.

We recall the most well-known team-based logics. We first give definitions for dependence
atoms, introduced in [Vää07]. Let k ∈ N. If ~t1 is a k-tuple of σ-terms and t2 is a σ-term, then
=(~t1, t2) is called a k-ary dependence atom. For 0-ary atoms, called constancy atoms, we may
simply write =(t2). We define FV(=(~t1, t2)) = Vr(~t1) ∪ Vr(t2). The set of formulas of dependence
logic over a signature σ, denoted by FO(=(·, ·)) [σ] or even more simply DEP [σ], is defined by
adding dependence atoms of all arities to the definition of the set of formulas of FO [σ]. By
allowing only at most k-ary dependence atoms in the condition above, we obtain the fragment
FO(=k(·, ·)) [σ] or even more simply DEPk [σ] called k-ary dependence logic. If M is a model and
X is a team over M such that dom(X) ⊇ Vr(~t1t2), then we define the truth of =(~t1, t2) in the
model M and the team X:

M �X =(~t1, t2) iff for all s, s′ ∈ X, if s(~t1) = s′(~t1), then s(t2) = s′(t2).

Next, we present so-called, anonymity atoms also called non-dependency atoms ([Gal12]), or
afunctional dependence atoms ([Par+89]). They have been studied, e.g., in [Vää22; Rön18]. Let
k ∈ N. If ~t1 is a k-tuple of σ-terms and t2 is a σ-term, then ~t1 Υ t2 is called a k-ary anonymity
atom. For 0-ary atoms Υ0t, called non-constancy atoms, we may simply write Υt. We define
FV(~t1 Υ t2) = Vr(~t1) ∪ Vr(t2). The set of formulas of anonymity logic over a signature σ, denoted
by FO(Υ) [σ] or even more simply ANON [σ], is defined by adding anonymity atoms of all arities
to the definition of the set of formulas of FO [σ]. By allowing only at most k-ary anonymity atoms
in the condition above, we obtain the fragment FO(Υk) [σ] or even more simply ANONk [σ] called
k-ary anonymity logic. If M is a model and X is a team over M such that dom(X) ⊇ Vr(~t1t2),
then we define the truth of ~t1 Υ t2 in the model M and the team X:

M �X ~t1 Υ t2 iff for every s ∈ X, there is s′ ∈ X such that s(~t1) = s′(~t1) but s(t2) 6= s′(t2).

Next, we turn to inclusion atoms. Let k ∈ N. If ~t1,~t2 are k-tuples of σ-terms, then ~t1 ⊆ ~t2 is
a k-ary inclusion atom. We define FV(~t1 ⊆ ~t2) = Vr(~t1) ∪ Vr(~t2). The set of formulas of inclusion
logic over a signature σ, denoted by FO(⊆) [σ] or even more simply INC [σ], is defined by adding
inclusion atoms of all arities to the definition of the set of formulas of FO [σ]. By allowing only at
most k-ary inclusion atoms in the condition above, we obtain the fragment FO(⊆k) [σ] or even
more simply INCk [σ] called k-ary inclusion logic. If M is a model and X is a team over M such
that dom(X) ⊇ Vr(~t1~t2), then we define the truth of ~t1 ⊆ ~t2 in the model M and the team X:

M �X ~t1 ⊆ ~t2 iff for all s ∈ X, there exists s′ ∈ X such that s(~t1) = s′(~t2).

Let us now recall (conditional) independence atoms. Let k1, k2, k3 ∈ N. If ~t1 is a k1-tuple, ~t2
a k2-tuple of σ-terms and ~t3 a k3-tuple of σ-terms, then ~t2 ⊥~t1

~t3 is a (k1,k2, k3)-ary (conditional)

2 Preliminaries 6

independence atom. We define FV(~t2 ⊥~t1
~t3) = Vr(~t1) ∪ Vr(~t2) ∪ Vr(~t3). The set of formulas

of (conditional) independence logic over a signature σ, denoted by FO(⊥) [σ] or even more
simply IND [σ] is defined by adding independence atoms of all arities to the definition of the
set of formulas of FO [σ]. By allowing only at most (k1,k2, k3)-ary independence atoms in the
condition above, we obtain the fragment FO(⊥k1,k2,k3) [σ] or even more simply INDk1,k2,k3 [σ]
called (k1, k2, k3)-ary (conditional) independence logic. If M is a model and X is a team over M
such that dom(X) ⊇ Vr(~t1~t2~t3), then we define the truth of ~t2 ⊥~t1

~t3 in the model M and the
team X:

M �X ~t2 ⊥~t1
~t3 iff for all s, s′ ∈ X, if s(~t1) = s′(~t1), then there exists s′′ ∈ X such that

s′′(~t1~t2) = s(~t1~t2) and s′′(~t1~t3) = s′(~t1~t3).

Finally, we present the syntax and the semantics for exclusion logic. Let k ∈ N. If ~t1,~t2 are
k-tuples of σ-terms, then ~t1 | ~t2 is a k-ary exclusion atom. We define FV(~t1 | ~t2) = Vr(~t1) ∪ Vr(~t2).
The set of formulas of exclusion logic over a signature σ, denoted by FO(|) [σ] or even more simply
EXC [σ], is defined by adding exclusion atoms of all arities to the definition of the set of formulas
of FO [σ]. By allowing only at most k-ary exclusion atoms in the condition above, we obtain the
fragment FO(|k) [σ] or even more simply EXCk [σ] called k-ary exclusion logic. If M is a model
and X is a team over M such that dom(X) ⊇ Vr(~t1~t2). We define the truth of ~t1 | ~t2 in the model
M and the team X:

M �X ~t1 | ~t2 iff for all s, s′ ∈ X, it holds that s(~t1) 6= s′(~t2).

More generally, we will speak of team-based logic to speak of one of these logics based on
team semantics (i.e. independence logic, anonymity logic, inclusion logic, exclusion logic, or
independence logic) and of team-based formula to speak of a formula from one of these logics (i.e.
a formula which uses dependency atoms, anonymity atoms, inclusion atoms, exclusion atoms, or
independence atoms).

2.2 Closure properties
The logics that we have presented so far can be differentiated on the basis of their distinct closure
properties. Let us start by defining the closure properties.

Definition 2.2. Let σ be a signature. A team-based σ-formula ϕ:

• is said to have the empty team property if for any σ-model M, it holds that M �∅ ϕ
(according to team semantics).

• is said to be downwards closed if for all σ-models M and teams X over M, it holds that

M �X ϕ =⇒ ∀Y ⊆ X,M �Y ϕ .

• is said to be union closed if for all σ-models M and collections {Xi | i ∈ I} of teams Xi

over M, it holds that

M �Xi
ϕ for all i ∈ I =⇒ M �∪i∈I Xi

ϕ .

• is said to be flat if for all σ-models M and teams X over M, it holds that

M �X ϕ ⇐⇒ M �{s} ϕ for all s ∈ X .

3 Flattening of a formula 7

One can remark that the flatness property is equivalent to the combination of the downwards
closure and the union closure properties.

Each of these properties is extended to team-based logics: a given logic (e.g. DEP, ANON,
INC, EXC, . . .) has some of these properties if all formulas of the logic have those properties. We
can then split some of the well-known team-based logics between the ones that are downwards
closed and the ones that are union closed.

3 Flattening of a formula
We will now introduce the flattening of a formula ϕ, denoted by ϕf , where ϕ belongs to some
team-based logic. The notion of “flattened formulas” was first defined in [Vää07] and then used
e.g. in [Yan14].

The definition of flattening that was given in [Vää07] was inductive and for dependence logic
only. We present here an axiomatic definition which is appropriate in a wider context. We
show that in most cases these axioms determine a unique inductive definition of a flattening of a
formula.

1. (entailment axiom) for all models M and all teams X over M such that dom(X) ⊇ FV(ϕ),
the following must hold

M �X ϕ =⇒ M �X ϕf .

2. (flatness axiom) ϕf is a flat formula.

3. (distributivity axiom) The following holds: (?(ϕ1, . . . , ϕn))f = ?(ϕf
1, . . . , ϕ

f
n) for any logical

operator ? of arity n, and (Qxϕ)f = Qxϕf for any quantifier Q.
Now, what we would like to obtain is an explicit inductive definition of the flattening of a

given formula. From these requirements, we can infer the flattening of the most well-known
team-based atoms. It is easy to see that taking > for the flattening of any non first-order atom is
sufficient to satisfy all these requirements. But the interesting question is: is it necessary? The
goal of this section is to answer this question.

We get the following flattening for the most well-known team-based atoms
Proposition 3.1. The following equivalences are implied by the above axioms:

(i) for dependency atoms: (=(~x, y))f ≡ >,

(ii) for anonymity atoms: (~xΥ y)f ≡ >,

(iii) for inclusion atoms: (~x⊆ ~y)f ≡ >,

(iv) for independence atoms: (~x⊥ ~y)f ≡ >.

Proof. The proof of each claim is straightforward.
(i) Suppose (=(~x, y))f 6≡ >. Then M 2X (=(~x, y))f for some model M and team X. But

by flatness axiom, (=(~x, y))f is flat, and so it means that there is s0 ∈ X such that
M 2{s0} (=(~x, y))f . On the other hand, as a singleton team satisfies any dependence atom,
then in particular M �{s0} =(~x, y), and so by the entailment axiom, M �{s0} (=(~x, y))f .
Contradiction.

(ii) Suppose that (~xΥ y)f 6≡ >. Then M 2X (~xΥ y)f for some model M and team X. But by
flatness axiom, (~xΥy)f is flat, and so it means that there is s0 ∈ X such that M 2{s0} (~xΥy)f .
On the other hand, we construct from scratch a new team Y as follows. We write ~a = s0(~x)
and b = s0(y). Let b′ ∈ M \ {b} (non-empty by assumption in this article). Let s′

0 be the
assignment {~x 7→ ~a, y 7→ b′}. Then consider the team Y = {s0, s

′
0}, i.e. Y is the following

team

4 Flattening operator 8

~x y
s0 : ~a b
s′

0 : ~a b′

By construction, M �Y ~xΥ y, so by the entailment axiom, we get M �Y (~xΥ y)f . Now by
the flatness axiom, (~xΥ y)f is flat, and so for all s ∈ Y we get M �{s} (~xΥ y)f , in particular
for s0 ∈ Y we get M �{s0} (~xΥ y)f . Contradiction.

(iii) Suppose (~x⊆ ~y)f 6≡ >. Then M 2X (~x⊆ ~y)f for some model M and team X. But by flatness
axiom, (~x⊆ ~y)f is flat, and so it means that there is s0 ∈ X such that M 2{s0} (~x⊆ ~y)f . On
the other hand, we construct from scratch a new team Y as follows. We write ~a = s0(~x) and
~b = s0(~y). Let s′

0 be the assignment {~x 7→ ~a, ~y 7→ ~a}. Then consider the team Y = {s0, s
′
0},

i.e. Y is the following team

~x ~y

s0 : ~a ~b
s′

0 : ~a ~a

By construction, M �Y ~x⊆ ~y, so by the entailment axiom, we get M �Y (~x⊆ ~y)f . Now by
the flatness axiom, (~x⊆ ~y)f is flat, and so for all s ∈ Y we get M �{s} (~x⊆ ~y)f , in particular
for s0 ∈ Y we get M �{s0} (~x⊆ ~y)f . Contradiction.

(iv) Suppose (~x⊥~y)f 6≡ >. Then M 2X (~x⊥~y)f for some model M and team X. But by flatness
axiom, (~x⊥ ~y)f is flat, and so it means that there is s0 ∈ X such that M 2{s0} (~x⊥ ~y)f . On
the other hand, as a singleton team satisfy any pure independence atom, then in particular
M �{s0} ~x⊥ ~y, and so by the entailment axiom, M �{s0} (~x⊥ ~y)f . Contradiction.

Remark 3.2. Curiously, we do not obtain a unique solution in the case of the exclusion atom.
Indeed, for the exclusion atom (~x | ~y)f , there are (at least) two choices satisfying the flattening
axioms: we can let (~x | ~y)f be >, or can let (~x | ~y)f be ~x 6= ~y. Both choices satisfy the flattening
axioms.

In order to remain as symmetrical as possible, we make the choice in this thesis to take > as
the flattening of the exclusion atom.

Note that in this proposition 3.1, we found the flattening only for atoms built of variables, not
terms. In fact, this is not an issue as we can eliminate composite terms inside team-based atoms
by existentially quantifying over new variables. Hence, we now have an explici expression for all
team-based atoms built of terms. Also, it is immediate to infer that the flattening of a first-order
literal in actually itself. One can then infer the flattening of any team-based formula using the
distributivity axiom: substitute all team-based atoms by >, and keep all other (first-order) literals
as they are.

4 Flattening operator
We move now to investigating the flattening operator which just boldly asserts that the formula
following the operator has to be treated in a flat way, whether the formula looks flat or not. This
operator was first introduced in [Hod97] and was at that time denoted by “↓”. In this article, we
will denote it by “F”.

4 Flattening operator 9

4.1 Definition
First we give the syntax and the semantics of the flattening operator F.

Definition 4.1 (Syntax of the flattening operator). Let ϕ be a team-based σ-formula,
then Fϕ is a team-based σ-formula. The flattening operator does not bind variables, thus
FV(Fϕ) = FV(ϕ).

It should be noted that the flattening operator F may be applied to any kind of team-based
formula. Let D = {d1, . . . , dn} be a set of team-based constructors (e.g. dependency, anonymity,
independency, inclusion, exclusion, etc.). We will refer to the extension of FO(D) by the flattening
operator F by FO(D,F).

Definition 4.2 (Semantics of the flattening operator). Let ϕ be a team-based σ-formula,
M a σ-model and X a team over M such that dom(X) ⊇ FV(ϕ). We define the truth of the
formula Fϕ in the model M and the team X as:

M �X Fϕ ⇐⇒ ∀s ∈ X,M �{s} ϕ

Therefore, one can rewrite the flatness definition as follows: let ϕ be a team-based formula,
M a model and X a team over M such that dom (X) ⊇ FV (ϕ) (also equal to FV (Fϕ)), then ϕ
is flat if and only if it holds that

M �X ϕ ⇐⇒ M �X Fϕ.

It is precisely because of this characterization of flattenness that the flattening operator was
introduced, and that it bears the name that it does. One can easily show the following immediate
properties about the flattening operator.

Property 4.3. Let ϕ be any team-based formula. Then the following properties hold:

(i) the formula Fϕ is always flat.

(ii) ϕ is flat if and only if Fϕ ≡ ϕ.

(iii) the operator F is idempotent, that is, FFϕ ≡ Fϕ.

Proof.

(i) Let M be a model, and let X be a team over M such that dom (X) ⊇ FV (Fϕ). According
to definition 4.1, we get that FV (Fϕ) = FV (ϕ). Then

M �X Fϕ
⇐⇒ ∀s ∈ X,M �{s} ϕ (semantics of F)
⇐⇒ ∀s ∈ X,

(
∀s′ ∈ {s} ,M �{s′} ϕ

)
⇐⇒ ∀s ∈ X,M �{s} Fϕ

(ii) Let M be a model, and let X be a team over M such that dom (X) ⊇ FV (ϕ). Suppose
that ϕ is flat, then M �X Fϕ iff for all s ∈ X, M �{s} ϕ iff M �X ϕ. Conversely, suppose
that Fϕ ≡ ϕ, then M �X ϕ iff M �X Fϕ iff for all s ∈ X, M �{s} ϕ.

(iii) This is a direct consequence of the two previous items.

4 Flattening operator 10

Property 4.4. Let ϕ be a team-based formula, M a model and X a team over M such that
dom (X) ⊇ FV (ϕ). If ϕ is a flat formula, then

M �X Fϕ =⇒ M �X ϕf .

Proof. Suppose that ϕ is flat, then M �X Fϕ implies by property 4.3.(ii) that M �X ϕ, which
implies by the entailment axiom that M �X ϕf .

Remark 4.5. Caution: the reciprocal of property 4.4 is false. Consider the ANON-sentence
ϕ := ∀x∃y (xΥ y) and the model M with domain M = {a} consisting in only one element a.
Then ϕf ≡ ∃y.>, and so M � ϕf . But M 2 ϕ, and as ϕ is a sentence, then Fϕ ≡ ϕ, and so
M 2 Fϕ. Hence ϕf 2 Fϕ.

As a consequence, Fϕ needs not be logically equivalent to ϕf , even for ϕ that are already flat.

4.2 Basic properties of the flattening operator
We start by stating some simple facts about the application of the flattening operator to the most
well-known atoms of dependency. The proofs are straightforward and are thus omitted.

Proposition 4.6.

(i) for first-order literals α: Fα ≡ α,

(ii) for dependency atoms: F(=(~t1, t2)) ≡ >,

(iii) for anonymity atoms: F(~t1 Υ t2) ≡ ⊥,

(iv) for inclusion atoms: F(~t1 ⊆ ~t2) ≡ ~t1 = ~t2,

(v) for exclusion atoms: F(~t1 | ~t2) ≡ ~t1 6= ~t2,

(vi) for independency atoms: F(~t2 ⊥~t1
~t3) ≡ >.

We now state simple properties about the distributivity of the flattening operator with respect
to the Boolean connectives. The proof of the next proposition is a routine application of the
semantics.

Proposition 4.7. For any team-based formulas ϕ,ψ it holds that

F(ϕ ∧ ψ) ≡ Fϕ ∧ Fψ.

If, ϕ,ψ are both satisfied by the empty team, then additionally

F(ϕ ∨ ψ) ≡ Fϕ ∨ Fψ.

When the logic does not have the empty team property, this proposition does not hold. A
counter-example is provided by the formula NE ∨ NE, where NE is satisfied by a team if the team
is non-empty.

We continue by studying commutativity of the flattening operator with the quantifiers.

Definition 4.8. A formula ϕ is called downwards flat (DF) if

M �X ϕ =⇒ ∀s ∈ X,M �{s} ϕ

for all models M and for all teams X over M such that dom(X) ⊇ FV(ϕ). Similarly, ϕ is called
upwards flat (UF) if

(∀s ∈ X,M �{s} ϕ) =⇒ M �X ϕ

for all models M and for all teams X over M such that dom(X) ⊇ FV(ϕ).

4 Flattening operator 11

flat

DC UC

DF UF

ϕf ∈ 3 Fϕ

Figure 4.1: Relation between all flatness notions

We sum-up the relations between the different flatness notions we introduced so far in the
figure 4.1.

One can easily remark that the property of downwards closure is strictly stronger assumption
than downwards flatness. However, it will be a sufficient assumption for the following propositions.
Proposition 4.9. (i) If ∃xϕ is downwards flat, then F(∃xϕ) � ∃xFϕ.

(ii) If ∃xϕ is upwards flat, then ∃xFϕ � F(∃xϕ).
Proof. We consider the proof of the first claim. Let M be a model, and let X be a team over M
such that dom(X) ⊇ FV(ϕ) ∪ FV(ψ). Then

M �X F(∃xϕ)
=⇒ ∀s ∈ X,M �{s} ∃xϕ
=⇒ ∀s ∈ X, ∃H : {s} → P∗(M),M �{s}[H/x] ϕ (semantics of ∃)
=⇒ ∃H ′ : X → P∗(M),∀s ∈ X,M �{s}[H′/x] ϕ

=⇒ ∃H ′ : X → P∗(M),∀s ∈ X, ∀s′ ∈ {s} [H ′/x] ,M �{s′} ϕ (downwards flatness)
=⇒ ∃H ′ : X → P∗(M),∀s ∈ X [H ′/x] ,M �{s} ϕ

=⇒ ∃H ′ : X → P∗(M),M �X[H′/x] Fϕ
=⇒ M �X ∃x(Fϕ)

Proposition 4.10. (i) if ∀xϕ is downwards flat, then F(∀xϕ) � ∀x(Fϕ),

(ii) if ∀xϕ is upwards flat, then ∀x(Fϕ) � F(∀xϕ).
Proof. Again we consider the proof of the first claim only as the proof is similar in the second
case. Let M be a model, and let X be a team over M such that dom(X) ⊇ FV(ϕ)∪FV(ψ). Then

M �X F(∀xϕ)
=⇒ ∀s ∈ X,M �{s} ∀xϕ
=⇒ ∀s ∈ X,M �{s}[M/x] ϕ

=⇒ ∀s ∈ X, ∀s′ ∈ {s} [M/x] ,M �{s′} ϕ (downwards flatness)
=⇒ ∀s ∈ X [M/x] ,M �{s} ϕ

=⇒ M �X[M/x] Fϕ
=⇒ M �X ∀x(Fϕ)

5 The expressive power of the flattening operator 12

4.3 Preservation of closure properties
The proof of the next lemma is a routine application of the semantics.

Lemma 4.11. (i) If ϕ is downwards closed (resp. union closed), then Fϕ is also downwards
closed (resp. union closed).

(ii) If ϕ is downwards flat (resp. upwards flat), then Fϕ is also downwards flat (resp. upwards
flat).

Corollary 4.12. Let L be team-based logic extending FO by some dependencies and operators.

(i) If L is downwards closed (resp. union closed, resp. downwards flat, resp. upwards flat),
then so is L(F).

(ii) If L is flat, then L ≡ L(F).

5 The expressive power of the flattening operator
We ask now, does the flattening operator, when added to a logic, increase the expressive power
of the logic? In [Gal18] the flattening operator F was said to be safe for a team-based logic
L if L ≡ L(F). The idea is that the operator F can be “safely” added to the logic, as it does
not increase its expressive power. In this section we systematically study the effect of F to the
expressive power of various team-based logics.

5.1 Adding F to inclusion and anonymity logic
The goal of this subsection is to show that inclusion logic together with the flattening operator
FO (⊆,F) is equivalent to the positive fragment of greatest fixed-point logic GFP+. From this it
follows that FO (⊆,F) has exactly the same expressive power as FO(⊆) by the results of [GH13].

Theorem 5.1. For every FO (⊆,F)-formula ϕ(~x) with free variables in ~x = (x1, . . . , xn) there
is a GFP+-formula ϕ∗ = ϕ∗(R, ~x) such that ar(R) = n, R occurs only positively in ϕ∗, and the
condition

M �X ϕ(~x) iff 〈M, R := X(~x)〉 �s ϕ
∗(R, ~x) for all s ∈ X

holds for all models M and all teams X over M with dom(X) ⊇ {x1, . . . , xn}.

Proof. The proof is by structural induction on ϕ. The cases for first-order literals, inclusion
atoms, connectives, and quantifiers are treated as in [GH13, Theorem 15]. We show the inductive
case corresponding to F.

If ϕ(~x) is of the form Fψ(~x), then we define

ϕ∗(R, ~x) = ∀~y(¬R~y ∨ θ(~x, ~y))

where θ(~x, ~y) = ψ∗(S, ~x)
[
(~y = ~t)

/
S(~t)

]
, that is, θ is the formula ψ∗(S, ~x) in which we replaced

each atom of the form S(~t) by the atom ~y = ~t. Let M be a model and X be a team over M with
dom(X) ⊇ {x1, . . . , xn}. One can remark that

5 The expressive power of the flattening operator 13

M �X Fψ(~x) ⇐⇒ ∀s ∈ X. M �{s} ψ(~x)
⇐⇒ ∀s ∈ X.∀s′ ∈ {s} . 〈M, S := {s} (~x)〉 �s′ ψ∗(S, ~x) (by IH on ψ(~x))
⇐⇒ ∀s ∈ X. 〈M, S := {s} (~x)〉 �s ψ

∗(S, ~x)
⇐⇒ ∀s ∈ X. 〈M, S := {s(~x)}〉 �s ψ

∗(S, ~x)
⇐⇒ ∀s ∈ X. M �s ψ

∗(S, ~x)
[
(s(~x) = ~t)

/
S(~t)

]
(5.1)

The last equivalence is justified by the following observation: as S is assigned to a relation
with a unique element s(~x), having an atom on the form S(~t) is ψ∗ is equivalent to have the
atom s(~x) = ~t instead (we do the test “by hand”), so we perform this substitution in ψ∗ while
preserving equivalence.

Now, suppose M �X Fψ(~x), then condition 5.1 holds. We want to show

〈M, R := X(~x)〉 �s ∀~y(R~y → ψ∗(S, ~x)
[
(~y = ~t)

/
S(~t)

]
) for all s ∈ X

To do so, let ~b ∈ M such that ~b ∈ X(~x). Then there is an assignment s ∈ X such that ~b = s(~x),
we fix such an assignment. And by condition 5.1 we obtain

M �s ψ
∗(S, ~x)

[
(~b = ~t)

/
S(~t)

]
Conversely, suppose that

〈M, R := X(~x)〉 �s ∀~y(R~y → ψ∗(S, ~x)
[
(~y = ~t)

/
S(~t)

]
) for all s ∈ X

So by taking ~y := s(x), as s(~x) ∈ {s(x) | s ∈ X} def= X(~x), then the condition “R~y” is satisfied, so
we get

M �s ψ
∗(S, ~x)

[
(s(~x) = ~t)

/
S(~t)

]
for all s ∈ X

and the result follows from condition 5.1.

Corollary 5.2.

(i) The logics FO (⊆,F) and FO(⊆) are equivalent for sentences.

(ii) The logics FO (Υ,F) and FO(Υ) are equivalent for sentences.

Proof. The first claim follows by theorem 5.1.
The second claim follows from the fact inclusion atoms can be expressed using anonymity

atoms and vice versa.

5.2 Adding F to unary inclusion logic
Galliani [Gal18] proved that constancy atoms increase the expressive power of unary inclusion logic.
More precisely, he proved that non-connectedness of graphs can be expressed using constancy
atoms and unary inclusion atoms, but not in terms of unary inclusion atoms alone. The next
proposition shows that the same effect can be obtained using F and inclusion atoms.

Notation 5.3. Let φ is a first-order formula, and let ψ be a team-based formula. We will then
denote ϕ ↪→ ψ as an abbreviation for ¬ϕ ∨ (ϕ ∧ ψ).

We thank Pietro Galliani for suggesting the following proposition.

5 The expressive power of the flattening operator 14

y0

y2

y′
2

z′
1

z1

z3

Figure 5.1: Illustration of the anonymity atom mechanism to fill a cycle

Proposition 5.4. The following FO (⊆1,F) sentence

∃y(F(∃x(x 6= y ∧ ∀z(E(x, z) ↪→ z ⊆ x))))

is true in a graph G = 〈V,E〉 if and only if the graph G is disconnected.

Proof. It is straightforward to check that the formula above is logically equivalent with the
formula used in [Gal18] to show the same result.

Corollary 5.5. The flattening operator F increases the expressive power of FO(⊆1).

5.3 Adding F to unary anonymity logic
5.3.1 Expressivity of unary anonymity atoms and the flattening operator

For any n ∈ N, we denote by An a graph consisting of two cycles each of length 2n+1 and Bn a
graph consisting of a single cycle of length 2n+2.

Proposition 5.6. The following FO(Υ1,F) sentence

∃xF(∃y(y 6= x ∧ ∀z(E(y, z) ↪→ (z 6= x ∧ y Υ z ∧ z Υ y))))

is true in the models An and is false in Bn.

Proof. The intuition behind this FO (Υ1,F)-sentence is as follows: consider a cycle of even length.
We would like to fill it completely with variable assignments, in order to be able to detect if
there exists another node in the graph that is not part of the considered cycle. To do so, we
are going to use the mechanism of the anonymity atom to fill this cycle. More precisely, we will
partition the cycle into two sets of nodes, that will be assigned to y and z respectively, in such a
way that there will be an alternation between the values taken by y and z along the cycle. This
is illustrated in the figure 5.1.

This filling process is done via the sub-formula E(y, z) ↪→ (y Υ z ∧ z Υ y). Here, the black
node y0 in the figure 5.1 corresponds to a starting value for the variable y. Then E(y, z) ↪→ yΥ z
forces the variable z to take two different values z1 and z′

1 that are in fact the two adjacent
vertices of y0. Then E(y, z) ↪→ z Υ y firstly forces the variable y to take two different values y2
and y0 that are in fact the two adjacent vertices of z1, and secondly forces the variable y to take
two different values y′

2 and y0 that are in fact the two adjacent vertices of z′
1. And so on. At the

end, as the considered cycle is of even length, then the last two values assigned to the variable z
actually coincide. Such filled components then satisfy the clause ∀z(E(y, z) ↪→ y Υ z ∧ z Υ y).

5 The expressive power of the flattening operator 15

The whole objective will be to succeed in distinguishing the graphs An from the graphs Bn.
In fact, the graphs An and Bn are all composed of one or two cycles of even length.

At the end of the filling process, we obtained a cycle filled with an alternation of values for
the variables z and y. In order to distinguish An from Bn, we need to find an x such that it does
not belong to the alternation of y and z. Hence, we need to check both that y 6= x and z 6= x,
which gives

y 6= x ∧ ∀z(E(y, z) ↪→ (z 6= x ∧ y Υ z ∧ z Υ y))
The end of the construction of the desired formula is identical to the one we made for the unary
inclusion logic together with the flattening operator F, and at the end we finally get

∃xF(∃y(y 6= x ∧ ∀z(E(y, z) ↪→ (z 6= x ∧ y Υ z ∧ z Υ y))))

By construction, it is clear that this formula is true for the graphs An but is false for the graphs
Bn.

5.3.2 Unary anonymity logic does not express non-connectedness

The next technical lemma will be used to show that the structures An and Bn from the previous
section cannot be separated by formulas of unary anonymity logic.

Let M be a model, let X be a team over M, and let F ⊆ Aut (M). Then we define the team
closure of X under F , written ClF (X), as the set of all assignments obtained by applying all
automorphisms from F to all assignments of X, that is

ClF (X) def= {f (s) | s ∈ X, f ∈ F}

For F = Aut (M), we simply write Cl (X) instead of ClAut(M) (X), that is

Cl (X) def= {f (s) | s ∈ X, f ∈ Aut (M)}

Recall that a magma is a set M equipped with a binary operation ? that sends any two
elements from M to another element in M , and in this case we call ? an internal binary operation.
We call a unitary magma any magma whose internal binary operation admits a neutral element
(which is then unique), that is, if there is e ∈ M such that for all m ∈ M we get e?m = m?e = m.

Lemma 5.7. Let M be a model. Let F ⊆ Aut(M) be a unitary magma such that for any two
points m1,m2 ∈ M there exists an automorphism f ∈ F such that f(m1) = m1 and f(m2) 6= m2.
Then for all teams X over M such that ClF (X) = X and all formulas ϕ ∈ FO(Υ1) with free
variables in dom(X) we have that

M �X ϕ iff M �X ϕf

Proof. It suffices to show the right to left direction that is proved via structural induction. The
proof for the connectives and quantifiers are similar to that of Lemma 21 in [Gal18].

Assume ϕ = x1 Υ x2. As (x1 Υ x2)f = > we need to prove that M �X x1 Υ x2 only from the
hypothesis of the lemma, that is, whenever X is a team whose domain contains the variables
x1 and x2 and such that X = ClF (X). But this is the case. Indeed, suppose that s(x1) = m1
and s(x2) = m2. Then by assumption of the lemma, there is an automorphism f ∈ F such that
f(m1) = m1 and f(m2) 6= m2, and since X = ClF (X) there exists some assignment s′ ∈ X such
that s′ = f(s), that is, s′(x) = f(s(x)) for all x ∈ dom(s). This implies in particular that{

s′(x1) = f(s(x1)) = f(m1) = m1 = s(x1)
s′(x2) = f(s(x2)) = f(m2) 6= m2 = s(x2)

5 The expressive power of the flattening operator 16

and thus, for any assignment s ∈ X there exists some assignment s′ ∈ X such that s′(x1) = s(x1)
but s′(x2) 6= s(x2). This shows that M �X x1 Υ x2, as required.

Corollary 5.8. The flattening operator increases the expressive power of unary anonymity logic.

Proof. By Proposition 5.6, the formula Θ separates the models An and Bn. Assume for a
contradiction that Θ is equivalent to some ϕ of unary anonymity logic. By Lemma 5.7, ϕ is
equivalent to ϕf in the models An and Bn, that is

An � ϕf ⇐⇒ Bn � ϕf ,

where ϕf is a first-order formula. But by an Ehrenfeucht-Fraïssé game argument, this is impossible.

5.4 Adding F to dependence, exclusion and independence logic
In this section we show that FO(=(·, ·),F) has exactly the same expressive power as FO(=(·, ·)). We
will use the same strategy as in subsection 5.1. More precisely, we will show that FO(=(·, ·),F) j
ESO, and as it is well known that ESO ≡ FO(=(·, ·)), we will obtain the result. The same idea
works also for exclusion and independence logic.

Exactly as for inclusion logic and GFP+ (theorem 5.1), we have to adapt the equivalence
between FO(=(·, ·),F) and ESO because they do not use the same semantics.

Recall that a sentence φ(R) from second-order logic is called downwards closed if (M, A) � φ(R)
and A′ ⊆ A imply (M, A′) |= φ(R).

Lemma 5.9. For every FO(=(·, ·),F)-formula ϕ(~x) with the free variables in ~x = x1, . . . , xn, there
is an ESO-formula ϕ∗ ≡ ϕ∗(R) which is downwards closed and such that ar(R) = n, and that
satisfies the following condition:

M �X ϕ(~x) iff 〈M, R := X(~x)〉 � ϕ∗(R) ∨ ∀~x¬R(~x) (5.2)

holds for all models M and all teams X over M with dom(X) ⊇ {~x}.

Proof. We consider the inductive case corresponding to ϕ = Fψ as the other cases can be dealt
with analogously to [Vää07, Theorem 6.2]. It turns out that the formula ϕ∗ that we need to
take is exactly the same as for the translation from FO(⊆,F) to GFP+ which is clearly in ESO
assuming ψ∗ is.

Corollary 5.10. The operator F does not increase the expressive power of dependence and
exclusion logic.

Proof. This follows by lemma 5.9 as any downwards closed ESO-formula ϕ(R) can be translated
into a dependence logic formula satisfying (5.2), see [KV09; KV11]. The claim for exclusion logic
follows from the fact that exclusion atoms can be expressed using dependence atoms and vice
versa.

Corollary 5.11. The operator F does not increase the expressive power of independence logic.

Proof. The proof is analogous to the case of dependence logic using the analogue of lemma 5.9
(without the assumption of downward closure) ans its converse shown in [Gal12].

5 The expressive power of the flattening operator 17

5.5 Adding F to fragments of dependence logic
We begin by showing that the flattening operator reduces to the flattening of a formula for
existential dependence logic formulas.

Proposition 5.12. If ϕ ∈ FO(=(·, ·)) is existential then Fϕ ≡ ϕf .

Proof. Recall that M �X Fϕ iff M �{s} ϕ, for all s ∈ X. Now it is easy to show using induction
on ϕ using downwards closure (and singleton-valued supplements functions) that M �{s} ϕ iff
M �{s} ϕ

f for any singleton team {s}, from which the claim follows.

Next we turn to the so-called constancy logic the formulas of which has the following normal
form.

Proposition 5.13 ([Gal12]). Let ϕ(~x) ∈ FO(=(·)). Then ϕ is logically equivalent to a constancy
logic formula of the form

∃~y

(∧
i

=(yi) ∧ α(~x, ~y)
)

for some first-order formula α.

Proposition 5.14. The operator F does not increase the expressive power of constancy logic,
that is FO(=(·),F) ≡ FO(=(·)).

Proof. We prove the claim using induction on ϕ ∈ FO(=(·),F). We consider only the case where
ϕ = Fψ. By the induction hypothesis and the previous lemma, we get that ψ is equivalent with
some formula in the normal form:

∃~y

(∧
i

=(yi) ∧ α(~x, ~y)
)

for some first-order formula α. It now follows from Proposition 5.12 that ϕ ≡ ∃~yα.

5.6 Adding F to FO with the Boolean negation
In this section we consider the effects of adding F to FO(∼) (also denoted by FON in the following).

Definition 5.15. Let ϕ be a σ-formula, M a σ-model and X a team over M such that dom(X) ⊇
FV(ϕ). We define the truth of the formula ∼ϕ (the Boolean negation of ϕ) in the model M and
the team X as:

M �X ∼ϕ ⇐⇒ M 2X ϕ

We will use the following notations from [Lüc20]:

• Eϕ def= ∼¬ϕ, meaning that at least one assignment in the considered team satisfies ϕ;

• ϕ6 ψ
def= ∼(∼ϕ ∧ ∼ψ), so that M �X ϕ6 ψ iff M �X ϕ or M �X ψ, which corresponds to

the Boolean disjunction (a.k.a. intuitionistic disjunction).

We will utilize the following normal form theorem.

6 Summing up expressive powers 18

Proposition 5.16 ([Lüc20]). Let ϕ(~x) ∈ FO(∼). Then ϕ is logically equivalent to a formula of
the form

6
i∈I

αi ∧
∧

j∈Ji

Eβi,j

for some finite sets I and Ji and for first-order formulas αi and βi,j for all i ∈ I and j ∈ Ji.

Proposition 5.17. FO(∼,F) ≡ FO(∼).

Proof. To prove the non-trivial direction (⇒), we need to show that for all ϕ(~x) ∈ FO(∼,F), there
is ϕ∗(~x) ∈ FO(∼) such that for all models M and for all teams X over M such that dom(X) ⊇ {~x},
the following holds

M �X ϕ(~x) ⇐⇒ M �x ϕ
∗(~x)

We prove it by structural induction on ϕ. The only interesting case is when ϕ(~x) = Fψ(~x).
According to proposition 5.16, we get that

ψ(~x) ≡ 6
i∈I

αi ∧
∧

j∈Ji

Eβi,j

for some finite sets I and Ji and for first-order formulas αi and βi,j for all i ∈ I and j ∈ Ji. It
is now a routine application of the semantics to show that ϕ is equivalent with the first-order
formula ∨

i∈I

αi ∧
∧

j∈Ji

βi,j

 ,

using the facts that in singleton teams Eβ is equivalent with β and that for all s ∈ X

M �{s} 6
i

ϕi iff M |=X

∨
i

ϕi,

for first-order formulas ϕi.

6 Summing up expressive powers
We sum up all the previous results in the following figure 6.1. It shows when a fragment is
comparable to another in terms of expressive power, and when it is the case, it indicates which
fragment is more expressive than another. The red edges are the comparisons that are not known
at the moment, but which we believe to be true. These questions have some echoes in finite
model theory where beyond the seminal and old results about the monadic case (i.e. arity 1)
of existential second order logic, very few separation results are known [Ajt83; AFS00; DLS98].
Considering the tight connections between arity based fragments of existential second order logic
and of some team logics [DK12], such a situation is all but surprising.

Conclusion
We have explored the flattening operator F within the framework of team semantics, a powerful
extension of classical first-order logic that allows for a more powerful treatment of dependencies and
independencies in logical formulas. The flattening operator was originally introduced by Wilfrid

References 19

FO (F) cor. 4.12≡ FO

FO (∼,F)
prop. 5.17

≡ FO (∼)FO(Υ0)≡?FO (Υ0,F)

FO(⊆1)

FO (⊆1,F) FO (⊆1,=(·))

FO(Υ1)

FO (Υ1,F)

FO(⊆2)

FO (⊆2,F)

FO (⊆,F) cor. 5.2≡ FO (⊆)
≡ FO(Υ) cor. 5.2≡ FO (Υ,F)

FO (=(·),F)
prop. 5.14

≡ FO (=(·))

FO(|1)

FO (|1,F)

FO(=1(·, ·))

FO (=1(·, ·),F)

FO(|2)

FO (|2,F)

FO (=(·, ·),F) cor. 5.10≡ FO (=(·, ·))
≡ FO (|) cor. 5.10≡ FO (|,F)

FO (⊥,F) cor. 5.11≡ FO (⊥)

<<
<

>

cor. 5.5
<

[Gal18]≤

>

cor. 5.8

≤
>?

<..
.

<
<

<?

≤

<?

≤

<?

<..
.

< >

Figure 6.1: Expressive power of logics on the level of formulas

Hodges in 1997 [Hod97], but its potential and implications have remained largely unexplored
until now.

Through our investigation, we demonstrated that the introduction of the flattening operator F
does not add expressive power to logics such as dependence logic, inclusion logic, constancy logic,
inconstancy logic and FO(∼). It turns out that this is not the case with the fixed arity fragments
of these logics. For example, we have seen that unary inclusion logic with the flattening operator
FO (⊆1,F) is strictly more expressive than unary inclusion logic FO(⊆1). We conjecture that the
same is true of all the other fragments of fixed arity, too.

The work presented here opens several avenues for future research. One possible direction is
the further exploration of the computational complexity associated with the translation of some
logic fragments augmented with the flattening operator into SAT problems, along the lines of
[DKV22].

Acknowledgments
The second author was supported by The Research Council of Finland, grant Nř345634. The
fourth author was supported by The Research Council of Finland, grant Nř322795, and the
European Research Council (ERC), grant agreement Nř101020762.

References
[APV21] Samson Abramsky, Joni Puljujärvi, and Jouko Väänänen. Team Semantics and

Independence Notions in Quantum Physics. 2021. arXiv: 2107.10817 [math.LO]
(cit. on p. 1).

https://arxiv.org/abs/2107.10817

References 20

[Ajt83] Miklós Ajtai. “Σ1
1-Formulae on finite structures”. In: Annals of Pure and Applied

Logic 24.1 (1983), pp. 1–48. doi: 10.1016/0168-0072(83)90038-6 (cit. on p. 18).
[AFS00] Miklós Ajtai, Ronald Fagin, and Larry Stockmeyer. “The Closure of Monadic NP”.

In: Journal of Computer and System Sciences 60.3 (2000), pp. 660–716. doi: 10.
1006/JCSS.1999.1691 (cit. on p. 18).

[CG22] Ivano Ciardelli and Gianluca Grilletti. “Coherence in inquisitive first-order logic”. In:
Annals of Pure and Applied Logic 173.9 (2022), pp. 103–155. doi: 10.1016/j.apal.
2022.103155 (cit. on p. 3).

[CIY20] Ivano Ciardelli, Rosalie Iemhoff, and Fan Yang. “Questions and Dependency in
Intuitionistic Logic”. In: Notre Dame Journal of Formal Logic 61.1 (2020), pp. 75–
115. doi: 10.1215/00294527-2019-0033 (cit. on p. 1).

[Cor+19] Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and Jouko Väänänen.
“A logical approach to context-specific independence”. In: Annals of Pure and Applied
Logic 170.9 (2019), pp. 975–992. doi: 10.1016/j.apal.2019.04.004 (cit. on p. 1).

[Dur+18a] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema.
“Approximation and dependence via multiteam semantics”. In: Annals of Mathematics
and Artificial Intelligence 83.3-4 (2018), pp. 297–320. doi: 10.1007/s10472-017-
9568-4 (cit. on p. 1).

[Dur+18b] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema.
“Probabilistic Team Semantics”. In: Foundations of Information and Knowledge
Systems. Lecture Notes in Computer Science. Springer International Publishing,
2018, pp. 186–206. doi: 10.1007/978-3-319-90050-6_11 (cit. on p. 1).

[DK12] Arnaud Durand and Juha Kontinen. “Hierarchies in Dependence Logic”. In: ACM
Transactions on Computational Logic 13.4 (2012), 31:1–31:21. doi: 10.1145/2362355.
2362359 (cit. on p. 18).

[Dur+22] Arnaud Durand, Juha Kontinen, Nicolas de Rugy-Altherre, and Jouko Väänänen.
“Tractability Frontier of Data Complexity in Team Semantics”. In: ACM Transactions
on Computational Logic 23.1 (2022), 3:1–3:21. doi: 10.1145/3471618 (cit. on p. 1).

[DKV22] Arnaud Durand, Juha Kontinen, and Jouko Väänänen. Modular SAT-based techniques
for reasoning tasks in team semantics. 2022. arXiv: 2204.00576 [cs.LO] (cit. on
p. 19).

[DLS98] Arnaud Durand, Clemens Lautemann, and Thomas Schwentick. “Subclasses of
Binary NP”. In: Journal of Logic and Computation 8.2 (1998), pp. 189–207. doi:
10.1093/logcom/8.2.189 (cit. on p. 18).

[Gal12] Pietro Galliani. “Inclusion and exclusion dependencies in team semantics – On some
logics of imperfect information”. In: Annals of Pure and Applied Logic 163.1 (2012),
pp. 68–84. doi: 10.1016/j.apal.2011.08.005 (cit. on pp. 2, 5, 16, 17).

[Gal18] Pietro Galliani. “Safe Dependency Atoms and Possibility Operators in Team Seman-
tics”. In: Electronic Proceedings in Theoretical Computer Science 277 (Sept. 2018),
pp. 58–72. doi: 10.4204/eptcs.277.5 (cit. on pp. 12–15, 19).

[GH13] Pietro Galliani and Lauri Hella. “Inclusion logic and fixed point logic”. In: Com-
puter Science Logic 2013 (CSL 2013). Vol. 23. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2013, pp. 281–295. doi: 10.4230/LIPIcs.CSL.2013.281 (cit. on p. 12).

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1006/JCSS.1999.1691
https://doi.org/10.1006/JCSS.1999.1691
https://doi.org/10.1016/j.apal.2022.103155
https://doi.org/10.1016/j.apal.2022.103155
https://doi.org/10.1215/00294527-2019-0033
https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1145/2362355.2362359
https://doi.org/10.1145/2362355.2362359
https://doi.org/10.1145/3471618
https://arxiv.org/abs/2204.00576
https://doi.org/10.1093/logcom/8.2.189
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.4204/eptcs.277.5
https://doi.org/10.4230/LIPIcs.CSL.2013.281

References 21

[GV13] Erich Grädel and Jouko Väänänen. “Dependence and Independence”. In: Studia
Logica 101.2 (2013), pp. 339–410. doi: 10.1007/s11225-013-9479-2 (cit. on p. 2).

[HGW22] Darion Haase, Erich Grädel, and Richard Wilke. “Separation logic and logics with
team semantics”. In: Annals of Pure and Applied Logic 173.10 (2022). doi: 10.1016/
j.apal.2021.103063 (cit. on p. 1).

[HKV20] Miika Hannula, Juha Kontinen, and Jonni Virtema. “Polyteam semantics”. In:
Journal of Logic and Computation 30.8 (2020), pp. 1541–1566. doi: 10.1093/
logcom/exaa048 (cit. on p. 1).

[HLV24] Lauri Hella, Kerkko Luosto, and Jouko Väänänen. “Dimension in team semantics”.
In: Mathematical Structures in Computer Science 34.5 (2024), pp. 410–454. doi:
10.1017/S0960129524000021 (cit. on p. 2).

[Hod97] Wilfrid Hodges. “Some Strange Quantifiers”. In: Structures in Logic and Computer
Science: A Selection of Essays in Honor of A. Ehrenfeucht. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 51–65. doi: 10.1007/3-540-63246-8_4
(cit. on pp. 2, 8, 19).

[Kon13] Jarmo Kontinen. “Coherence and computational complexity of quantifier-free depen-
dence logic formulas”. In: Studia Logica 101.2 (2013), pp. 267–291. doi: 10.1007/
s11225-013-9481-8 (cit. on p. 3).

[KLV13] Juha Kontinen, Sebastian Link, and Jouko Väänänen. “Independence in Database
Relations”. In: Logic, Language, Information, and Computation. Vol. 8071. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 179–193. doi:
10.1007/978-3-642-39992-3_17 (cit. on p. 1).

[KV11] Juha Kontinen and Jouko Väänänen. “Erratum to: On definability in dependence
logic”. In: Journal of Logic, Language and Information 20.1 (2011), pp. 133–134. doi:
10.1007/s10849-010-9125-6 (cit. on p. 16).

[KV09] Juha Kontinen and Jouko Väänänen. “On definability in dependence logic”. In:
Journal of Logic, Language and Information 18.3 (2009), pp. 317–332. doi: 10.1007/
s10849-009-9082-0 (cit. on p. 16).

[Lüc20] Martin Lück. “Team logic: axioms, expressiveness, complexity”. PhD thesis. 2020.
doi: 10.15488/9376 (cit. on pp. 17, 18).

[MO22] Silke Meissner and Martin Otto. “A first-order framework for inquisitive modal
logic”. In: The Review of Symbolic Logic 15.2 (2022), pp. 311–333. doi: 10.1017/
S175502032100037X (cit. on p. 3).

[Par+89] Jan Paredaens, Paul De Bra, Marc Gyssens, and Dirk Van Gucht. The structure of
the relational database model. Vol. 17. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1989, pp. x+231. doi: 10.1007/978-3-642-69956-
6 (cit. on p. 5).

[Rön18] Raine Rönnholm. “Arity Fragments of Logics with Team Semantics”. PhD thesis.
2018. url: https://urn.fi/URN:ISBN:978-952-03-0912-1 (cit. on p. 5).

[Vää22] Jouko Väänänen. “An atom’s worth of anonymity”. In: Logic Journal of the IGPL
31.6 (2022), pp. 1078–1083. doi: 10.1093/jigpal/jzac074 (cit. on p. 5).

[Vää07] Jouko Väänänen. Dependence logic: a new approach to independence friendly logic.
London Mathematical Society Student Texts. Cambridge University Press, 2007.
doi: 10.1017/CBO9780511611193 (cit. on pp. 1, 4, 5, 7, 16).

https://doi.org/10.1007/s11225-013-9479-2
https://doi.org/10.1016/j.apal.2021.103063
https://doi.org/10.1016/j.apal.2021.103063
https://doi.org/10.1093/logcom/exaa048
https://doi.org/10.1093/logcom/exaa048
https://doi.org/10.1017/S0960129524000021
https://doi.org/10.1007/3-540-63246-8_4
https://doi.org/10.1007/s11225-013-9481-8
https://doi.org/10.1007/s11225-013-9481-8
https://doi.org/10.1007/978-3-642-39992-3_17
https://doi.org/10.1007/s10849-010-9125-6
https://doi.org/10.1007/s10849-009-9082-0
https://doi.org/10.1007/s10849-009-9082-0
https://doi.org/10.15488/9376
https://doi.org/10.1017/S175502032100037X
https://doi.org/10.1017/S175502032100037X
https://doi.org/10.1007/978-3-642-69956-6
https://doi.org/10.1007/978-3-642-69956-6
https://urn.fi/URN:ISBN:978-952-03-0912-1
https://doi.org/10.1093/jigpal/jzac074
https://doi.org/10.1017/CBO9780511611193

References 22

[Vää17] Jouko Väänänen. “The logic of approximate dependence”. In: Rohit Parikh on Logic,
Language and Society. Vol. 11. Outstanding Contributions to Logic. Springer, 2017,
pp. 227–234. doi: 10.1007/978-3-319-47843-2_12 (cit. on p. 3).

[Yan14] Fan Yang. “On Extensions and Variants of Dependence Logic”. PhD thesis. 2014.
url: http://hdl.handle.net/10138/43011 (cit. on p. 7).

https://doi.org/10.1007/978-3-319-47843-2_12
http://hdl.handle.net/10138/43011

	Introduction
	Preliminaries
	Team semantics
	Closure properties

	Flattening of a formula
	Flattening operator
	Definition
	Basic properties of the flattening operator
	Preservation of closure properties

	The expressive power of the flattening operator
	Adding F to inclusion and anonymity logic
	Adding F to unary inclusion logic
	Adding F to unary anonymity logic
	Expressivity of unary anonymity atoms and the flattening operator
	Unary anonymity logic does not express non-connectedness

	Adding F to dependence, exclusion and independence logic
	Adding F to fragments of dependence logic
	Adding F to FO with the Boolean negation

	Summing up expressive powers
	References

